2. ã·ãªã¼ãº â¢â¯ ãã¼ã â¢â¯ ã¯ã©ã¦ãã¢ããªã±ã¼ã·ã§ã³éçºæè¡ã®å°â¼å ¥ â¢â¯ ä»å¾ã®äºå® â¢â¯ å®åè ã®ããã®ããããScalaããã°ã©ãã³ã° â¢â¯ å®åè ã®ããã®ããããScalaâ¼å ¥åºâ¼åï¦ããã°ã©ãã³ã° â¢â¯ å®åè ã®ããã®ããããScalaè¨è¨ â¢â¯ å®åè ã®ããã®ãããããªãã¸ã§ã¯ãæååæ/è¨è¨ â¢â¯ å®åè ã®ããã®ããããæ¥ååæ 3. ä»â½æ¥ã®ãã¼ã â¢â¯ Monadicããã°ã©ãã³ã°ã®èªç¥ â¢â¯ æ¦è¦ãå¿ è¦æ§ â¢â¯ Scalazå°â¼å ¥ã®â¼å ¥ãâ¼å£ â¢â¯ å¿ è¦æ⼩å°éã®ç¥è識ï¼å ·ä½çãªä¾¿ï¥¥å©ï§ã â¢â¯ Scalazã®ä¾¿ï¥¥å©ï§æ©è½ â¢â¯ Monoid â¢â¯ é¢æ°åããã°ã©ãã³ã°ã®ãã¯ã¼ãç¥ã â¢â¯ å®ä½æ¥ã«ããã«é©â½¤ç¨å¯
{{#tags}}- {{label}}
{{/tags}}