You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Rules of Machine Learning: Stay organized with collections Save and categorize content based on your preferences. Best Practices for ML Engineering Martin Zinkevich This document is intended to help those with a basic knowledge of machine learning get the benefit of Google's best practices in machine learning. It presents a style for machine learning, similar to the Google C++ Style Guide and othe
å æ¥æ©æ¢°å¦ç¿çéã®æ¹ã¨Dockerã®è©±ãããéãMakefileã使ã£ã¦æ©æ¢°å¦ç¿ç°å¢ã®æ´åããã¦ãã人ã¯å®ã¯å°æ°æ´¾ãªããããªããã¨æãã¾ããã æ©æ¢°å¦ç¿ã§ä½¿ãã³ãã³ãã¯å¼æ°ãé·ããã¨ã¦ãè¦ãããããã®ããããã¾ãããæè¨ã§ãã¦ãã¦ããã¹ã¿ã¤ãããããtmuxå ã¨ãã ã¨æãè¿ããã¦ä½æ¸ãã¦ããããããããªããªããã¡ ãCtrlï¼Rã¨ãã§æ¤ç´¢ããããã¨ãã¦ã大ä½ã¯docker...ããå§ã¾ãã®ã§ã¿ã¤ãæ°å¤ããªããã¡ã Makefile ã¯ãDocker ã®ã³ãã³ããããæãã«ã¾ã¨ãããããjupyter notebook ã«ä½¿ãé·ã£ããããã³ãã³ã jupyter notebook --port 8888 --ip="0.0.0.0" --allow-root ãªã©ãç°¡ç¥åã§ãã¾ããããããããã§ãå ¨ä½çãªçç£æ§ã®åä¸ã«ç¹ããã¨ä¿¡ãã¦ãã¾ãã ä»åç´¹ä»ãã Makefile 㯠Docker
ãã¾ãããã¾ãã ãã®åº¦ãã¤ãã«ãã®è¨äºãå®æããããã¨ãã§ãã¾ãããããã¯ç§ãæ°å¹´åãããã£ã¨æ¸ãããã¨æã£ã¦ãããã¦ã§ãã®ã¢ã¯ã»ã¹ãã°ã«å¯¾ãããæ©æ¢°å¦ç¿ã使ã£ãç°å¸¸æ¤ç¥ã®å®ä¾ã§ããç§ã¯äºãããã¨ã«(â»1)ãæ å ±ã»ãã¥ãªãã£åéã§ããã¼ã¿ãµã¤ã¨ã³ã¹ã®æè¡ã¯é常ã«éè¦ã ãã¨ç¹°ãè¿ãã¦ãã¾ããããã®è¨äºã®å 容ã¯ã¾ãã«ãã®1ã¤ã®è¨¼ã¨ãªãã¨æãã¾ãããã®è¨äºã§ç¤ºãããå 容ãè¦ãã°ãããããæ©æ¢°å¦ç¿ããã¸ã§ã¤ãã¤ã(èªå½å)ãã ãª...ãã¨ãªãã§ãããã以ä¸ã«å¿å½ããã®ããã»ãã¥ãªãã£ã¨ã³ã¸ãã¢ã¯ãã²èªãã§ãããã¦å®è·µãã¦ã¿ã¦ãã ããã æ©æ¢°å¦ç¿ã«èå³ã¯ãããã®ã®ãã©ãããæãä»ããã°ããã®ãã¤ã¡ã¼ã¸ããããªã æ¬å½ã«AIããã¼ã¿ãµã¤ã¨ã³ã¹ãæ©æ¢°å¦ç¿ãã»ãã¥ãªãã£ã®åéã§å½¹ã«ç«ã¤ã®ãã確信ããã¦ãªã ãã¼ã¿ãµã¤ã¨ã³ã¹ãæ©æ¢°å¦ç¿ã¯é£ãããã ã¨æã£ã¦ãã ãã°è§£æã«ããã¦ãgrepãåç´ãªçµ±è¨å¦çãã
ãã®è¨äºã¯ãEureka Advent Calendar 2020ãã®16æ¥ç®ã®è¨äºã§ãã ããã«ã¡ã¯ãHead of BIã®éæ¬ã§ãã 15æ¥ç®ã¯ Jun Ernesto Okumuraã«ããã¨ã¦ã¬ã«ã®ãã¼ã¿çµç¹éå¶ã®1å¹´éã§ãããä»æ¥ã¯ãã®è©±ã«é¢é£ãã¦ãããå°ãå ·ä½çã«Eureka BIãã¼ã ã®Analystã®åæããã¼ãæ¯ããåæç°å¢ã«ã¤ãã¦æ¸ãã¾ãã主ã«éç¨ã®ææ³ãä»çµã¿ã¥ããã®ç´¹ä»ã«ãªãã¾ãã æ³å®èªè Data Lakeã»Data Ware Houseã»Data Martãªã©ã®ãã¼ã¿åºç¤å¨è¾ºç¥èãããAnalystãæ´»ãããã¼ã¿åºç¤ã®éçºéç¨ã«èå³ãããåç½®ãBIãã¼ã ã®ç´¹ä»ãAnalystã®æ¥åããã¼ã«é¢ããåç½®ããå°ãé·ããªãã¾ãããä»ãåããã ããã¾ãã ãæ¥ãã®æ¹ã¯ãæ¬é¡ã¾ã§é£ã°ãã¦ãã ããã ãã¼ã ã®ããã·ã§ã³ã¨ãã¼ã¿åºç¤BIãã¼ã ã¯ãã価å¤ã®ããææ決å®ãã¨ãææ決å®
æ¸ãã㨠gokartã使ã£ã¦pandasé¢é£ã®ç¢ºèªãããæ¹æ³ 1ã¤ç®ã¯inputã®pd.Dataframeãemptyã ã£ãã¨ãã«æ£å¸¸çµäºããããã®ç¢ºèª 2ã¤ç®ã¯dumpããã¨ãã«åcolumnãæ³å®éãã®åã«ãªã£ã¦ãããã®ç¢ºèª gokartã¨ã¯? ã¨ã ã¹ãªã¼ãfringe81ãªã©ãéçºãã¦ããOSS Spotifyãéçºãã¦ããluigiãã©ãããã¦ä½¿ãããããã¦ãããç¹ã«ã³ã¼ããæ¸ãéãæ¸ãã 対象ãã¼ã¸ã§ã³ 0.3.11 inputã®pd.Dataframeãemptyã ã£ãã¨ãã«æ£å¸¸çµäºããããã®ç¢ºèª ä¸è¨ã®ã³ã¼ãã¯pd.Dataframeãemptyã®ã¨ãã«ã¨ã©ã¼ãçºçããã åä½ãã¹ããæ¸ããã¨ã¯åæã ããæ¾ããããªããã¨ãå¤ã ãã£ãã class DataTask(gokart.TaskOnKart): task_namespace = 'sample' def run(s
ã¢ã¯ã»ã¹æ¨©ããªã¯ã¨ã¹ã ã¾ãã¯MIMICã¸ã®ã¢ã¯ã»ã¹æ¨©ããããå¿ è¦ãããã¾ãã以ä¸ããã®æç¶ããéè¨ãã¦ããã¾ããããã¡ããåããã¦åç §ãã¦ãã ããã CITIãã¬ã¼ãã³ã° MIMICã¸ã®ã¢ã¯ã»ã¹æ¨©ããªã¯ã¨ã¹ãããåã«ãCITI programã®âData or Specimens Only Researchâã¨ããã³ã¼ã¹ãããªã³ã©ã¤ã³ã§ä¿®äºãã¦ããå¿ è¦ãããã¾ãã ã¾ãããã¡ãã®ãµã¤ãã«è¡ããâaffiliationâã®ã¨ããã§âMassachusetts Institute of Technology Affiliatesâãé¸ã³ã¾ãï¼âindependent learnerâã§ã¯ãªãã®ã§ã注æãï¼ã âMassachusetts Institute of Technology Affiliates courseâââHuman Subjects training categoryââ
Netflixããæ©æ¢°å¦ç¿ã¯ã¼ã¯ããã¼ç®¡çç¨ã®Pythonã©ã¤ãã©ãªï¼Metaflowããªãªã¼ã¹ããã¾ããã ããã使ãã¨ï¼ ãã¼ã¿å¦çã»ã¢ãã«æ§ç¯ããã»ã¹ãçµ±ä¸ãã©ã¼ãããã§è¨è¿°ã§ãï¼å ¨ä½ã®ããã¼ã追ãããã ã¢ãã«ã»åå¦çå·¥ç¨ã®ãã¼ã¸ã§ã³ç®¡çãã§ãã AWSç°å¢ä¸ã§ã®åæ£å¦çãå¯è½ ã¨ãã£ãã¡ãªãããããã¾ãã æ°ã«ãªã人ã¯ï¼tutorialãåããã¤ã¤å ¬å¼ããã¥ã¡ã³ãã«ç®ãéãã¦ã¿ã¾ãããã Tutorialã«ã¤ãã¦ã¯ï¼pip install metaflowã§ã©ã¤ãã©ãªãå ¥ããå¾ï¼ ã¨ããã ãã§ä¸å¼æãã¾ãã®ã§ï¼æ°è»½ã«è©¦ããã¨ãã§ãã¾ãã æ¬è¨äºã§ã¯ï¼ãã£ããã¨ããæ©è½æ¦è¦ã¨ä½¿ãæ¹ãã¾ã¨ãã¦ããããã¨æãã¾ãã ã©ã¤ãã©ãªæ¦è¦ Metaflowã§ã¯ï¼ãã¼ã¿å¦çãæ©æ¢°å¦ç¿ã¢ãã«æ§ç¯ã»äºæ¸¬ã®ã¯ã¼ã¯ããã¼ãPythonã®ã¯ã©ã¹ã¨ãã¦å®ç¾©ãï¼ã³ãã³ãã©ã¤ã³ããå®è¡ãã¾ãã ãã®éå®è¡ã®é½åº¦
ãã®è¨äºã¯Recruit Engineers Advent Calendar 2018 - 8æ¥ç®ã®è¨äºã§ãã 注æç¹ ã¿ã¤ãã«ã¯ç ½ãã§ãããæ°è¦äºæ¥ã«ããããã¼ã¿ã¨ã³ã¸ãã¢ãªã³ã°ã®åæãã®æ¹ãæ£ããããã§ãã ã¯ãªãªãã£ã¨ãããè¨äºã®ä¿¡é ¼åº¦ã¯ãæ稿æéãã®ãªã®ãªã«ãªã£ã¦ãã¾ã£ããã¨ããå¯ãã¦ããããã¨ãããããã§ãã æ¬ã¨ã³ããªã¼ã®å 容ã¯å人çãªè¦è§£ã§ãããæå±ããçµç¹ã代表ãããã®ã§ã¯ããã¾ããããã¼ã¿ã®åãæ±ãã¯é常ã«ã»ã³ã·ãã£ããªãããã¯ã§ãããããæ°è»½ã«çºä¿¡ãã¹ãã§ã¯ãªãã¨ãããã¨ã¯éã æ¿ç¥ãã¦ããã¾ãããã誤ããèæ ®ä¸è¶³ã ã¨æããç¹ãããã°ãããã¯å ¨ã¦ç§å人ã®åä¸è¶³ã«ãããã®ã§ãã®ã§ãã©ããç§å人å½ã¦ã«ãææã®ã³ã¡ã³ããããã ããã¨å¹¸ãã§ãã ããã 注æç¹ ããã èæ¯ åæ ä½å¶ ã·ã¹ãã éçºã¹ã³ã¼ã æ©æ¢°å¦ç¿WebAPIã¯åé¢ ãã¼ã¿åºç¤è¨è¨ å ¨ä½ã®è¨è¨ããªã·ã¼ ãã¼ã¿
ãJXé信社Advent Calendar 2019ã10æ¥ç®ã®è¨äºã§ã. æ¨æ¥ã¯, @rychhrããã®ãPure WebSocketsããµãã¼ãããAWS AppSyncã§Webã¨iOSéã®ãªã¢ã«ã¿ã¤ã ãã£ãããä½ã£ã¦ã¿ã(1)ãã§ãã. æ¹ãã¾ãã¦, ããã«ã¡ã¯. JXé信社ã§ã·ãã¢ã»ã¨ã³ã¸ãã¢&ãã¼ã¿åºç¤ã¨ã³ã¸ãã¢ããã¦ãã¾ã, @shinyorkeï¼ãããã¼ãï¼ã¨ç³ãã¾ã. JXé信社ã§ã¯, ãã¼ã¿é§åã§ã®ææ決å®ããã³æ½çå®æ½ãããåæ»ã«é²ãããã, ãã¼ã¿åºç¤ã®æ§ç¯ã»éç¨ãé²ããªãããã©ã¤ã¢ã«çã«æ§ã ãªFrameworkããã¼ã«ã®æ¤è¨¼ãè¡ã£ã¦ãã¾ã.*1 ãã®ã¨ã³ããªã¼ã§ã¯, ç§ãã·ã¥ãã¨PySparkã§åæ£å¦çããã...åã«, æå ã§è©¦ããã¨ãã®ææ³ã¨ãã®ç¥è¦ ã®ã話ãæ®ãã¦ããããã¨æãã¾ã. ãªã, åæ£å¦çãã®ãã®ã®ç¥è¦ã»ãã¦ãã¦ã§ã¯ãªã, ããåã«PySparkã«
ç¥ã£ã¦ãã人ã¯ç¥ã£ã¦ããã¨æãããQiitaã§ã¯ãã³ãã³å¤§éã®ã¹ãã è¨äºãæ稿ããã¦ããã æ·±å¤24~26æé ã«è¨äºä¸è¦§ã確èªãã¦ã¿ã¦æ¬²ããã ã¹ãã è¨äºãããããåºã¦ããã¯ãã ç»é²ããã¦ã®Qiitaã¦ã¼ã¶ã¯ä¸å®ããªã1 ââââ @dcm_chida åãã¾ãð§ ã¯ããã« ããã¯NTTãã³ã¢ãµã¼ãã¹ã¤ããã¼ã·ã§ã³é¨AdventCalendar2019ã®1æ¥ç®ã®è¨äºã§ãã æã ã®é¨ç½²ã§ã¯æ¥é ãããKDDCUP2ãããè«æèªã¿ä¼ãã«åãçµãã§ãããè¥æããä¸å 社å¡ã¾ã§æå 端ã®æè¡åå¾ã«å±ãã§ãã¾ãã ããããæ´»åããã£ã¨å¤é¨ã¸ã¨çºä¿¡ãã¦ãããã¨å§ããã®ããã®AdventCalendarã§ãã社å¡ä¸äººä¸äººãæ¸ããè¨äºãéãã¦ãå°ãã§ãå¤ãã®æ¹ã«èå³ãæã£ã¦é ããã°å¹¸ãã§ãã ãã¦ãåã¯4å¹´ç®ç¤¾å¡ã§ããããã°ã©ãã³ã°åå¿è ã®é ããç¾å¨ã«è³ãã¾ã§ãQiitaã«ã¯ããªããä¸è©±ã«ãªãã¾ããã èªå
We help companies test and improve machine learning models via our global AI Community of 1 million+ annotators and linguists. Our proprietary Ground Truth AI training platform handles all data types across 500+ languages and dialects. Our AI Data Solutions vastly enhance AI systems across a range of applications from advanced smart products, to better search results, to expanded speech recognitio
ææ°çã«ã¢ãããã¼ããã¾ããã å¤ããªã£ã¦ããã¨ãããªã©å¤æ°ãã£ãã®ã§ãã¢ãããã¼ããã¦æå±ã®ããã¯ããã°ã¨ãã¦æ稿ãã¾ããããããããã°ãã¡ããã¾ãã¯åç §ãã ããã ãã®ãã¼ã¸ã¯ãæ®ãã¦ããã¾ãã æ©æ¢°å¦ç¿ã®ç°å¢æ§ç¯ã®ããã«ä»æ´ãªããDockerå ¥é æåã«ããã®è¨äºã®å¯¾è±¡è ã¯ãç§ã®ããã«è¶£å³ã§æ©æ¢°å¦ç¿ãã¦ããã¨ã³ã¸ã§ã¤å¢ãå¦çãããåå¿è ã対象ã§ããã¤ã³ãã©ãªã©æ¬è·ã§ã®éç¨ãªã©ã¯å ¨ãæ³å®ãã¦ããã¾ããã®ã§ããæ¿ç¥ããä¸ããã詳ããæ¹ã¯è²ã æãã¦ããã ããã¨å¬ããã§ãããããçæããè¦å®ã£ã¦ããã¦ä¸ããã ã¨ããããã§ãä»æ´ãªããæ©æ¢°å¦ç¿ã®ä»®æ³ç°å¢ã¨ãã¦Dockerãã¨ã¦ãåªç§ã§ãããã¨ã«æ°ã¥ããã®ã§ãDockerã«å ¥éãã¦ã¿ã¾ãããDockerã¯ä½ãï¼ã¨ããåºç¤çãªè§£èª¬ã¯ã以ä¸ã®ãããã¤ã³ã¿ã¼ãããããã®è¨äºãé常ã«åãããããã£ãã®ã§ã以ä¸åç §ä¸ããã ä»®æ³ç°å¢ã«é¢ãã¦ã¯ãVirtu
ããã«ã¡ã¯ãæ¨å ã§ãã ä»åã¯ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã®ã³ã³ããã£ã·ã§ã³ãµã¤ãã¨ãã¦æå㪠kaggle ã« Apache Spark ã§ææ¦ãã¦ã¿ããã¨æãã¾ãã 使ã£ã¦ããæ¹ã¯ç¥ã£ã¦ã¯ããã®ã§ãããå®ã¯ kaggle ã§ã¯ Apache Spark ã使ç¨ãã¦ãã人ã¯ãã¾ãå¤ãããã¾ãããæ¥æ¬ã§ã kaggle ã®ä¾ãè¦ã¦ã¿ãã¨ãPython+numpy+pandas+scikit-learn(+TensorFlow)ã¨ããçµã¿åããã§ææ¦ãã¦ããæ¹ãå¤æ°ã§ãã ä»åã®è¨äºã¯ããã¦Apache Sparkç¸ã㧠kaggle ã®ã³ã³ããã£ã·ã§ã³ã«åå ãã¦ã¿ã¦ãå®é Pandas/numpy/scikit-learnã§ãã£ã¦ãããã¨ãApache Sparkã«ç½®ãæãããã¨ãã§ããã®ããç½®ãæããã¨ãããã©ãããã®ããã¨ããã¨ããã«çç®ããå®éã«çµæãæ稿ããã¨ããã¾ã§ãã£ã¦ã¿ããã¨æãã¾
ã¯ããã« æ¨æ¥Vaexã®æ§è½è©ä¾¡ã®è¨äºãæ¸ãã¾ããã ãã®è¨äºã§ã¯é·ããªã£ã¦ãã¾ãã®ã§åºæ¬çãªä½¿ãæ¹ãªã©ãçç¥ãã¾ããã ãªã®ã§ä»åã¯å ¥éè¨äºã¨ãã¦ä½¿ãæ¹ãç´¹ä»ãã¾ãã blog.ikedaosushi.com Vaexã¨ã¯ æ¨æ¥ã®è¨äºã§ãæ¸ãã¾ããããé 延è©ä¾¡/Pandasã©ã¤ã¯/ã¢ã¦ããªãã³ã¢ã¨ããç¹å¾´ãæã£ããã¼ã¿ãã¬ã¼ã ã©ã¤ãã©ãªã§ãã github.com ãªã³ã¯é ããã¥ã¡ã³ã: https://docs.vaex.io/en/latest/index.html ã©ã¤ãã©ãªä½è 解説è¨äºâ : Vaex: Out of Core Dataframes for Python and Fast Visualization ã©ã¤ãã©ãªä½è 解説è¨äºâ¡: Vaex: A DataFrame with super-strings â Towards Data Science ã¤ã³ã¹ãã¼ã«ã»èªã¿
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}