ã¯ã©ã¹ã¿ãªã³ã° (clustering) ã¨ã¯ï¼åé¡å¯¾è±¡ã®éåãï¼å ççµå (internal cohesion) ã¨å¤çåé¢ (external isolation) ãéæããããããªé¨åéåã«åå²ããã㨠[Everitt 93, å¤§æ© 85] ã§ãï¼çµ±è¨è§£æãå¤å¤é解æã®åéã§ã¯ã¯ã©ã¹ã¿ã¼åæ (cluster analysis) ã¨ãå¼ã°ãï¼åºæ¬çãªãã¼ã¿è§£æææ³ã¨ãã¦ãã¼ã¿ãã¤ãã³ã°ã§ãé »ç¹ã«å©ç¨ããã¦ãã¾ãï¼ åå²å¾ã®åé¨åéåã¯ã¯ã©ã¹ã¿ã¨å¼ã°ãã¾ãï¼åå²ã®æ¹æ³ã«ãå¹¾ã¤ãã®ç¨®é¡ãããï¼å ¨ã¦ã®åé¡å¯¾è±¡ãã¡ããã©ä¸ã¤ã ãã®ã¯ã©ã¹ã¿ã®è¦ç´ ã¨ãªãå ´å(ãã¼ããªãããã¯ï¼ã¯ãªã¹ããªã¯ã©ã¹ã¿ã¨ããã¾ã)ãï¼éã«ä¸ã¤ã®ã¯ã©ã¹ã¿ãè¤æ°ã®ã¯ã©ã¹ã¿ã«åæã«é¨åçã«æå±ããå ´å(ã½ããï¼ã¾ãã¯ï¼ãã¡ã¸ã£ãªã¯ã©ã¹ã¿ã¨ããã¾ã)ãããã¾ãï¼ããã§ã¯åè ã®ãã¼ããªå ´åã®ã¯ã©ã¹ã¿ãªã³ã°ã«ã¤ãã¦è¿°ã¹ã¾ãï¼
ããã«ã¡ã¯ï¼ã¯ã©ã¹ã¿ãªã³ã°&å¯è¦åããããã§ãï¼ æ¬è¨äºã¯ãæ©æ¢°å¦ç¿ã¨æ°å¦ãAdvent Calendar14æ¥ç®ã§ãï¼ (ã¡ãªã¿ã«Advent Calendaråæ稿ã§ãï¼ãããããé¡ããã¾ã) ã¯ããã« ãã¼ã¿åæã¨ãæ©æ¢°å¦ç¿ãããã¦ãæ¹ã¯é«æ¬¡å ãã¼ã¿ã®æ¬¡å åæ¸ã¨å¯è¦åããããã¾ãããï¼ ãã®åéã®ä»£è¡¨é¸æã¨ããã°PCA(主æååæ)ã¨ãMDS(å¤æ¬¡å 尺度æ§ææ³)ã§ããï¼ ãããã®ç·å½¢å¤æç³»ææ³ã«ã¯ä»¥ä¸ã®åé¡ãããã¾ãï¼ é«æ¬¡å 空éä¸ã§éç·å½¢æ§é ãæã£ã¦ãããã¼ã¿ã«å¯¾ãã¦ã¯é©åãªä½æ¬¡å 表ç¾ãå¾ãããªã ãé¡ä¼¼ãããã®ãè¿ãã«é ç½®ããããã¨ããããé¡ä¼¼ããªããã®ãé ãã«é ç½®ããããã¨ãåªå ããããã¢ã«ã´ãªãºã ãåã 1.ã«é¢ãã¦ï¼ããä¾ã«åºãããã®ãSwiss roll dataset(ä¸å³)ã®ãããªã¤ãã§ããï¼ PCAã¯ãã¼ã¿ãå¤æ¬¡å æ£è¦åå¸ã«å¾ããã¨ãä»®å®ãã¦ããã®ã§ï¼ ãã®ä»®å®ãã
10. =pj|i exp(â|| â | /2 )xi xj | 2 Ï2 i exp(â|| â | /2 )âkâ i xi xk | 2 Ï2 i SNE㯠ããxi ã®è¿ããæ¡ä»¶ä»ã確çxj ã§è¡¨ãã¾ãï¼pj|i ã¯å¹³åpj|i ã«å¾ãã¬ã¦ã¹åå¸ã«ããã¦xi ãæ½åºããã確çå¯åº¦ã¨ãã¾ãï¼ æ°å¼ã§è¡¨ãã¨ä»¥ä¸ã®ã¨ããã§ãï¼ xj ããã§ï¼ ã¯å¹³åÏ2 i ã®ã¬ã¦ã¹åå¸ã®åæ£ã§ããï¼ ä»ã¯ç°ãªãäºç¹éã®é¡ä¼¼åº¦ã«ã®ã¿èå³ãããã®ã§ xi ã¨ãã¾ãï¼ (â» ããã§ï¼ä¸è¬ã« = 0pi|i ã§ãããã¨ã«æ³¨æãã¾ãããï¼ ãã®ããï¼è·é¢ã§ãé¡ä¼¼åº¦ã§ããªããè¿ããã¨ãã表ç¾ãç¨ãã¦ãã¾ãï¼) â pj|i pi|j 11. = , = 0qj|i exp(â|| â | )yi yj | 2 exp(â|| â | )âkâ i yi yk | 2 qi|i 次ã«ï¼æ¬¡å åæ¸å¾ã®ç¹ ããyi ã®è¿ãã
t-SNEã¯ãé«æ¬¡å ã®ãã¼ã¿ãå¯è¦åããææ³ã¨ãã¦ã¯ãé常ã«ä¾¿å©ã§ãããæã ä¸å¯è§£ãªæåããããã誤解ãæããããªå¯è¦åããããã¨ãããã¾ãã ã·ã³ãã«ãªãã¼ã¿ãå¯è¦åãã¦åä½ã®ä»çµã¿ãç解ãããã¨ã§ãt-SNEã®ããå¹æçãªä½¿ãæ¹ãå¦ã¶ãã¨ãã§ãã¾ãã t-SNEã¯ãé«æ¬¡å ã®ãã¼ã¿ã調æ»ããããã®ææ³ã¨ãã¦ã2008å¹´ã«van der Maatenã¨Hintonã«ãã£ã¦çºè¡¨ [1] ããã人æ°ã®ææ³ã§ãã ãã®æè¡ã¯ãæ°ç¾ã¾ãã¯æ°å次å ã®ãã¼ã¿ã§ããç¡çãã2次å ã®ãããããã«è½ã¨ãè¾¼ãã¨ãããã»ã¨ãã©éæ³ã®ãããªè½åãåãã¦ããããã«ãæ©æ¢°å¦ç¿ã®åéã§å¹ åºãæ®åãã¦ãã¾ãã ãã®ãããªå°è±¡ãæã£ã¦ããæ¹ãå¤ãã®ã§ããããããã£ãæãæ¹ããã¦ããã¨èª¤è§£ãæããã¨ãããã¾ãã ãã®è¨äºã®ç®çã¯ãããããå ±éã®èª¤è§£ã解ãããã§ãããã¾ãã t-SNEã§å¯è¦åã§ãããã¨ã¨ãã§ããªããã¨ã説æã
ç¹å¾´éé¸æã®ææ³ 1. ç¹å¾´éé¸æã®ææ³ æ ªå¼ä¼ç¤¾ ãµã¤ãã¼ã¨ã¼ã¸ã§ã³ã ã¡ãã£ã¢ãããããã¡ã³ãäºæ¥æ¬é¨ ã¨ã³ã¸ã㢠大澤ç¿å¾ 2. ç¹å¾´éé¸æã¨ã¯ï¼ â 使ç¨å¯è½ãªNåã®ç¹å¾´é ãã æé©ãªé¨åéåãè¦ã¤ããã㨠â Nåå ¨ã¦ã使ããã¨ãæé©ã¨ã¯éããªã â ç¹å¾´éãæ¸ãããã¨ã«ãã£ã¦ç²¾åº¦ãåä¸ãããã¨ããã â ç¹å¾´éãå¤ãããå ´åã å¦ç¿å¦çã®é«éåã次å ã®åªãã®è»½æ¸ãæå¾ ã§ãã {F1, F2,..., FN } 3. ç¹å¾´éé¸æææ³ã®åé¡ â Wrapper method â åè£ã®ç¹å¾´éé¨åéåãç¨ãã¦å¦ç¿ãè¡ãã ãã¹ãã»ããã«å¯¾ããè©ä¾¡ææ¨ãè¨ç® ï¼log lossãMSEãªã©ï¼ â å ¨é¨åéåãæ¢ç´¢ã§ããªãã®ã§ï¼ææ°ãªã¼ãã¼ï¼ è¿ä¼¼çã«æ¢ç´¢ãã â Filter method â ç¹å¾´éã¨ç®çå¤æ°ã®ä¾åé¢ä¿ãå®éåãã ä¾åã®æãå¼·ãKåã®ç¹å¾´éãæ¡ç¨ãã 4. Wra
ç®æ¬¡ ç®æ¬¡ ã¯ããã« ãã¬ã¼ãæé©è§£ å¤ç®çæé©åã®é¸æã¢ã«ã´ãªãºã ãµã³ãã«ã³ã¼ã ã³ã¼ãã®è§£èª¬ ã¹ã¯ãªããã®å®è¡çµæ ã¯ããã« æè¿ãã¾ãã¾å¤ç®çæé©åãæ±ãæ©ä¼ããããDEAPã使ã£ã¦æé©åãå®æ½ããã®ã§ããã®æã®ã¡ã¢ã§ãã DEAPã®ãã¥ã¼ããªã¢ã«ã«ãGAã§ã®å¤ç®çæé©åã®ä¾ããã£ãã®ã§ä½¿ããã¦ãããã¾ããã ãã¬ã¼ãæé©è§£ å¤ç®çæé©åã®å ´åãä¸è¬çã«æé©è§£ã¯1ã¤ã«å®ã¾ãã¾ããã ä¾ãã°2ã¤ã®ç®çé¢æ°ããã©ã¡ããã§ããã ãå°ãããããå ´åãèãã¦ã¿ã¾ãã 1ã¤ç®ã®ç®çé¢æ°ãæå°å¤ãåã£ãã¨ãã¦ããåãè¨è¨å¤æ°ã§ãããä¸ã¤ã®ç®çé¢æ°ãæå°å¤ãåãã¨ã¯éãã¾ããã GAã§ã®å¤ç®çæé©åã§ã¯ãæçµä¸ä»£ã®åä½ã®é©å¿åº¦(ç®çé¢æ°)ãã°ã©ãã«ãããããã¦ããã¨ãããæ²ç·ä¸ã«ä¹ã£ã¦ãã¾ãã ãã®æ²ç·ã®ãã¨ããã¬ã¼ãã©ã¤ã³(åã¯ãã¬ã¼ãããã³ã)ã¨å¼ã³ãç®çé¢æ°ããã¬ã¼ãã©ã¤ã³ä¸ã«ä¹ã解ã¯ãã¬ã¼
Six lines of Python is all it takes to write your first machine learning program! In this episode, we'll briefly introduce what machine learning is and why it's important. Then, we'll follow a recipe for supervised learning (a technique to create a classifier from examples) and code it up. Follow https://twitter.com/random_forests for updates on new episodes! Subscribe to the Google Developers:
ä½ã®è©±ãã¨ãã㨠æ©æ¢°å¦ç¿ã«ãããã«ã¼ãã«æ³ã®èª¬æã§ãããç»å ´ããã®ããã¡ãã®å³ã§ãã å·¦å´ã® (x, y) å¹³é¢ä¸ã®ç¹ãåé¡ããå ´åããã®ã¾ã¾ã ã¨ç·å½¢åé¡å¨ï¼ç´ç·ã§åé¡ããã¢ã«ã´ãªãºã ï¼ã§ã¯ãã¾ãåé¡ã§ããªãã®ããå³å³ã®ããã« z 軸ã追å ãã¦ãã¼ã¿ãå¤å½¢ããã¨ãå¹³é¢ã§ãããã«åå²ã§ããããã«ãªã£ã¦ãç·å½¢åé¡å¨ã«ããåé¡ããã¾ãããã¨ãããã®ã§ãããã®ããã«ãé«æ¬¡å 空éã«ãã¼ã¿ãåãè¾¼ããã¨ã§ãã¾ããã¨åé¡ããã®ãã«ã¼ãã«æ³ã®ä»çµã¿ã ã¨ããããã§ãã ãªã®ã§ããã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã»ã» ãããæ¬å½ã«ã«ã¼ãã«æ³ã®åçãç¥ã£ã¦ããæ¹ã«ã¯ãã¡ãã£ã¨æ°æã¡æªããªãã§ããï¼ â» ä»¥ä¸ã¯ã«ã¼ãã«æ³ãç¥ã£ã¦ããæ¹åãã®ã¤ã¶ããã§ãã ä¸è¨ã®ä¾ã¯ããã¼ã¿ã®é ç½®ã«ãããã¦ããã¾ãã㨠z 軸æ¹åã®å¤å½¢ããã¦ããã®ã§ãã¾ããã£ã¦ããã®ã§ãããã«ã¼ãã«æ³ã«ã¯ããã¼ã¿ã®é ç½®ã«ãããã¦ãã¾ããã¨å¤
ã³ã¹ãèæ ®åå¦ç¿ (cost-sensitive learning)â åºç¾©ã«ã¯ç¹å¾´éã®åå¾ã³ã¹ããªã©ãèæ ®ããå¦ç¿ãå«ã¾ãããï¼ç義ã«ã¯æ¬¡ã®ã¯ã©ã¹ã®èª¤åé¡ã³ã¹ããèæ ®ããåé¡ãã³ã¹ãèæ ®åå¦ç¿ (cost-sensitive learning) ã¨å¼ã¶ãã¨ãå¤ãï¼ äºæ¸¬æ£è§£çãæ大åããã®ã§ã¯ãªãï¼å®ç¨é¢ã§ã®ã³ã¹ããèæ ®ãã¦äºæ¸¬ã¯ã©ã¹ã決å®ããå¦ç¿ææ³ï¼æ¬¡ã®ãããªå ´åãæ³å®ï¼ ã¯ã¬ã¸ããã«ã¼ãã®å¯©æ»ï¼ä¸æ£å©ç¨ãæ£è¦ã®å©ç¨ã¨èª¤åé¡ããã¨å æ¬ãå«ããå©çã®æ失ã¨ãªããï¼æ£è¦ã®å©ç¨ãä¸æ£å©ç¨ã¨ãã¦èª¤åé¡ããã¨ï¼å©æ¯åæ©ä¼æ失ã¨ï¼ä¿¡ç¨ã«å¯¾ãããã¡ã¼ã¸ãçããï¼ãã®ããã«ï¼èª¤åé¡ã«é対称æ§ãããï¼ æ¤æ»ã§ã®ã¹ã¯ãªã¼ãã³ã°ï¼å ¨æ°æ¤æ»ãããã®ã¯äººå¡ä¸è¶³ã§ç¡çã ãï¼ä¸è¯ãçããããµã³ãã«ã ããæ¤æ»ããããã«ï¼ä¸è¯ã®å¯è½æ§ããããã®ãæ½åºãããï¼è¯åãä¸è¯ã¨èª¤åé¡ãã¦ããã¨ã®æ¤æ»ã§è¯åã¨åããã°åºè·ã§ãã¦
å¿ç¨ç¯å²ãåºãå¹ åºãè¦ç¹ããã®èª¬æã«ãªããã¡ãªãã¤ãºæé©åã«ã¤ãã¦ãæ¬è¨äºã§ã¯æ©æ¢°å¦ç¿ã®ãã¤ãã¼ãã©ã¡ã¼ã¿æ¢ç´¢ã«å©ç¨ãããã¨ã«éå®ãã¦è§£èª¬ãã¾ãã 1. ã¯ããã« æè¿ããã¤ãºæé©åã¨ããææ³ã注ç®ãéãã¦ãã¾ãã ãã¤ãºæé©å (Bayesian Optimization) ã¨ã¯ãå½¢ç¶ãããããªãé¢æ° (ãã©ãã¯ããã¯ã¹é¢æ°) ã®æå¤§å¤ (ã¾ãã¯æå°å¤) ãæ±ããããã®ææ³ã§ãã ãã¤ãºæé©åã«ã¤ãã¦ã®å ¥éè¨äºã¯ Web ä¸ã«ãã§ã«ããã¤ãããã¾ããããã¤ãºæé©åã¯å¿ç¨ç¯å²ãåºããå ¥éè¨äºã¯æ§ã ãªå¿ç¨ã«åããå¹ åºãè¦ç¹ããã®èª¬æã«ãªããã¡ã§ãã æ¬è¨äºã§ã¯ãæ©æ¢°å¦ç¿ã¦ã¼ã¶ã«åãã¦ããã¤ãºæé©åãæ©æ¢°å¦ç¿ã®ãã¤ãã¼ãã©ã¡ã¼ã¿æ¢ç´¢ã«å©ç¨ãããã¨ã«éå®ãã¦èª¬æãã¾ãã ããã«ãããæ©æ¢°å¦ç¿ã«å¯¾ãã¦ããã¤ãºæé©åãã©ã®ããã«å©ç¨ã§ããã®ããåããããã解説ãããã¨æãã¾ãã 2. ãã¤ãã¼ãã©ã¡
1 Introduction The caret package (short for Classification And REgression Training) is a set of functions that attempt to streamline the process for creating predictive models. The package contains tools for: data splitting pre-processing feature selection model tuning using resampling variable importance estimation as well as other functionality. There are many different modeling functions in R.
çµ±è¨çæ©æ¢°å¦ç¿ (under construction) å°å ¥ppt pdf æ å ±ã®å¤æéç¨ã®ã¢ãã«å ãã¤ãºçµ±è¨ã®æ義 èå¥ã¢ãã«ã¨çæã¢ã㫠次å ã®åªã æ失é¢æ°, bias, variance, noise æ°å¦ã®ããããppt pdf ç·å½¢ä»£æ°å¦ã§å½¹ç«ã¤å ¬å¼ æ å ±çè«ã®è«¸æ¦å¿µ (KL-divergenceãªã©) ææ°ååå¸æãèªç¶å ±å½¹ æ£è¦åå¸(æ¡ä»¶ä»ããããã³äºååå¸) è©ä¾¡æ¹æ³ppt pdf é ä½ãªãçµæã®è©ä¾¡(åç¾çã精度ãé©åçãFå¤) é ä½ä»ãçµæã®è©ä¾¡ ç·å½¢å帰ã¨èå¥ppt pdf ç·å½¢å帰 æ£è¦æ¹ç¨å¼ æ£è¦åé ã®å°å ¥ ç·å½¢èå¥ ã«ã¼ãã«æ³ppt pdf ç·å½¢èå¥ã®ä¸è¬å ã«ã¼ãã«ã®æ§ç¯æ³ æ大ãã¼ã¸ã³åé¡å¨ ã½ãããã¼ã¸ã³ã®åé¡å¨ SVMã«ããå帰ã¢ãã« SVMå®è£ ä¸ã®å·¥å¤« ã¢ãã«æ¨å®ppt pdf æ½å¨å¤æ°ã®ããã¢ãã« EMã¢ã«ã´ãªãºã å¤åãã¤ãºæ³ Expecta
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}