2. è«æåã«ãããå ±åãã¹ãã㨠â¢â¯ Kruschke, J. K. (2011). Doing bayesian data analysis: A tutorial with R and BUGS. Burlington, MA: Academic Press/Elsevier â¢â¯ ãã¤ãºæ¨å®ãç¨ããå ´åã® æ¨æºçãªå ±åæ¹æ³ã¯ã¾ã ç¢ºç« ããã¦ããªãã»ã»ã» 2 5. ãªãã®ããã«ãã¤ãºã使ç¨ãããè¿°ã¹ã äºä¾ï¼aï¼NJSTã¨éã£ã¦ãã«ãªå¤ãåãããããï¼æ£ è¦åå¸ã®ä»£ããã«ãã¼ã¿ã«åãããåå¸ã使ç¨å¯è½ From this explicit distribution of credible parameter values, inferences about null values can be made without ever referring to p values as i
ããã¾ãã¦ããã§ã¨ããããã¾ããmutopsyã§ããå¹´æ«ã«ããã¦ã¤ã«ã¹ããããã®ã«ææãã¦ãã¾ãã¾ãããã¶ãå æ°ã«2019å¹´ãè¿ãããã¨ãã§ãã¾ãããä»å¹´ãä½åãããããé¡ããããã¾ããæ°å¹´æ©ã ã§ã¯ããã¾ããï¼å¿ è¦ã«é§ããã¦Rã®èªä½é¢æ°ãä½ã£ãã®ã§å ±æãã¾ãã æ¢ã«åãã£ã¦ãã確ç質éé¢æ°ã使ã£ã¦MAP (æ大äºå¾ç¢ºç) æ¨å®å¤ã¨HDI (highest density interval; æé«å¯åº¦åºé) ãæ±ããé¢æ°ã§ããå®ç¾å¤ã¨ãã¦é¢æ£å¤kãè¿ãæ¢ç¥ã®ç¢ºç質éé¢æ° (e.g., äºé åå¸) ã§äºå¾åå¸ã表ç¾ã§ããå ´åã«ï¼ãã®ãããªäºå¾åå¸ã®MAPã¨HDIãè¨ç®ããã®ã«ä½¿ãã¾ããã¡ãªã¿ã«é£ç¶å¤ãè¿ã確çå¯åº¦é¢æ°ã®å ´åã§ãï¼é¢æ£åããã°ãã®é¢æ°ã使ã£ã¦è¿ä¼¼çã«MAPæ¨å®å¤ã¨HDIãæ±ãããã¨ãã§ããã¯ãã§ãã 2019å¹´1æ2æ¥è¿½è¨ï¼MAPã¨ãªãå¤ãHDIã®ç¯å²ã2ã¤ä»¥ä¸ããå ´å (ä¾ãã°
ã¯ããã« èªç¶è¨èªå¦çã®é åã§ã¯åºãç¥ããããLDA(Latent Dirichlet Allocation)ã«ã¤ãã¦å¾©ç¿ããã LDAã¯ãããã¯ã¢ãã«ã®ï¼ç¨®ã§ãããææ¸ãã©ã®ãããªãããã¯ããæ§æããã¦ããããæ¨è«ããã¢ãã«ã æ¨è«ãããã©ã¡ã¼ã¿ã¯ä»¥ä¸ã®ï¼ã¤ã ãããã¯åå¸ï¼ææ¸ãã¨ã®ãããã¯æ§ææ¯ç åèªåå¸ï¼ãããã¯ãã¨ã®åèªæ¯ç ãããã¯ã¢ãã«ã«é¢ããç解ã¯ãã®ï¼æã«å°½ããã¨æãã Fast and Scalable Algorithms for Topic Modeling | Center for Big Data Analyticsããå¼ç¨ å¾ãæ¥æ¬èªã§ã®LDAã®èª¬æã¨ãã¦ã¯è¦è¦çã«ã以ä¸ãåãããããã£ãã LDA for Pokemon analysis | haripo.com ã¢ããªã³ã° æ°å¼ã«ããLDAã¯ã°ã°ãã°è²ã åºã¦ããã®ã§ããã§ã¯å²æãããä»åã¯ã尤度è¨ç®ãã®
ã¯ããã« Stan Advent Calendar 2018 11æ¥ç®ã®è¨äºã§ããã¾ããã¿ã¤ãã«ãè¦ã¦å¯ãã人ãããããããã¾ããããStan Advent Calendar 2018ã®2æ¥ç®ã®è¨äºã§ãããåæ¢å¤§æ¨¹ããã«ããIntroduction to bayesplot (mcmc_ series) ã®ç¶ç·¨ã§ãããã¾ããbayesplotããã±ã¼ã¸ãã®ãã®ã«ã¤ãã¦ã¯ãæ¬è¨äºã§ã¯èª¬æãçç¥ãããããã¾ãã¯åæ¢ããã®è¨äºããä¸èªãã ããã以ä¸å¼ç¨ã Stanã«ã¯ãæ¢ã«ggplot2ã©ã¤ã¯ãªäºå¾å¦çç¨ã®é¢æ°ãæ¨æºè£ åããã¦ãã¾ããããã辺ã«é¢ãã¦ã¯ã以ä¸ã®è³æãã覧ãã ããã Stanã®ä¾¿å©ãªäºå¾å¦çé¢æ° ããã¨ã¯å¥ã«Stanå ¬å¼ãåºãã¦ããbayesplotããã±ã¼ã¸ã¨ãããã®ããã£ã¦ããããåããããªãã¨ãã§ãã¾ãã æ¢ã«æ¥æ¬èªæç®ã¨ãã¦å°æå çã®ãµã¤ãã§ç´¹ä»ããã¦ãã¾ããï¼ãã¡ãï¼ãä¸
## Warning: ããã±ã¼ã¸ 'knitr' ã¯ãã¼ã¸ã§ã³ 3.5.2 ã® R ã®ä¸ã§é ããã¾ãã ä»å¹´ãå§ã¾ãã¾ããããStanã¢ãã«ã¬!! 3å¹´é£ç¶ã®ã¨ã³ããªã¼ã¨ãªãã¾ãããæ¬è¨äºã¯ãStan adventcalender 2018 3æ¥ç®ã®è¨äºã«ãªãã¾ãã 2æ¥ç®ã®Hojoããã®è¨äºã§ç»å ´ããbayesplotããã±ã¼ã¸ã®ããã«ãStanã§ã¢ããªã³ã°ããçµæãæ±ãããããã¦ãããããã±ã¼ã¸ãããã¤ãåºããã¦ãã¾ããããã§ã¯ãtidybayesããã±ã¼ã¸ãç´¹ä»ãããã¨æãã¾ãã tidybayesã¯,ãã·ã¬ã³å¤§å¦æ å ±å¦é¨ã®å©æ Matthew KayãããéçºããRã®ããã±ã¼ã¸ã§ããå»å¹´ã®ã¢ãã«ã¬ã§ç´¹ä»ããctmããã±ã¼ã¸ã®éçºãã¤ã±ã¡ã³ã§ããããããã¾ãã¤ã±ã¡ã³ã§ããã¡ãªã¿ã«æ¨æ¥æ å½ã®Hojoãããã¤ã±ã¡ã³(*´Ð`)ï¾ï½§ï¾ï½§ã§ãã tidybayesã®HPã«é£ã¶ã¨ããæ¸ãã¦ã
å³1: Monte-Carlo, from Neugebauer (2018) ã¤ã³ãããã¯ã·ã§ã³ ã¢ã³ãã«ã«ãæ³ã¨ã¯ ã©ããè¦ã¦åæã確èªããã ãã¬ã¼ã¹ãããã GRçµ±è¨é ã確èªãã. å¤éé£éã¯ããã¤å¿ è¦ã èªå·±ç¸é¢é¢æ° (ACF, ã³ã¬ãã°ã©ã ) æå¹ãµã³ãã«ãµã¤ãº äºå¾è¨ºæãã¼ã« bayesplot ããããæã©ãããã°ãã? GRçµ±è¨éã®å¤ã大ãã ã¢ã«ã´ãªãºã ãå¤ãã æå¹ãµã³ãã«ãµã¤ãº ã®å¤ãå°ãã ä½éæ··å éå¼ã ããããããã°ã©ã ãééã£ã¦ããå ´å ã¾ã¨ã åèæç® ã¤ã³ãããã¯ã·ã§ã³ãã®æ稿ã¯, 第78åRåå¼·ä¼@æ±äº¬ï¼#TokyoRï¼ - connpass ã§ã® LT ã®å 容ãå çä¿®æ£ãããã®ã§ãã. 以ä¸ã¯å½æã®ã¹ã©ã¤ãã§ãã. bayesplot ã使ã£ãã¢ã³ãã«ã«ãæ³ã®å®è·µã¬ã¤ã from æºå¿ çæ¡ ä»¥å, Tokyo.R ãã©ããã®æ親ä¼ã§, ãã«ã³ã
æ¦è¦A. Vehtari, Gelman, Simpson, Carpenter, & Bürkner (2020)ã§ææ¡ããã¦ãããã«ã³ãé£éã¢ã³ãã«ã«ãæ³(MCMC)ã®åæ確èªæ¹æ³ãç´¹ä»ãã. ãããã¯ãæå¹ãµã³ãã«ãµã¤ãº(ESS)ã¨ãã£ãå¾æ¥ãã使ãããæ¹æ³ã®åé¡ç¹ã解æ¶ãããã®ã§ãã. ç¹ã«éè¦ãª, 以ä¸ã®æ¦å¿µã®ä½¿ãæ¹ãç´¹ä»ãã. æ£è¦åã©ã³ã¯ã¨ä¸å¤®å¤ã¾ããã®ç³ã¿è¾¼ã¿ bulk-ESSã¨tail-ESS ã©ã³ã¯ãããããå§ãã¨ãã, ä¸è¨ã®è¦è¦å ä»åç´¹ä»ããæ¹æ³ã®å¤ãã¯bayesplotããã±ã¼ã¸ã§ç¨æããã¦ãã. ããã¯å»å¹´Tokyo.Rã®5åéLTããããã«æ¸ãããã®ã®ç¶ãã§ãã.ill-identified.hatenablog.com 2021/4/7 追è¨: ãã®è«æ㯠Bayesian Analysis èªã«ã¢ã¯ã»ãããããããã (DOI: 10.1214/20-B
Stanããã¤ãºçµ±è¨ã¢ããªã³ã°ã«é¢ããAdvent Calendar 2017ã§ãã Stanã«é¢ããRãpythonã®æ å ±ã§ãããã¨æãã¾ãï¼ åå¿è 大æè¿ã§ãããã¼ãã«ãä¸ãã¦åå ¥ãããããã¾ãããã Stanãç¥ã£ã¦ããæç¹ã§ï¼ã¨ã³ããªã¼ããæè½ã¯ååããã¾ãããï¼
These are all important methods and concepts related to statistics that are not as well known as they should be. I hope that by giving them names, we will make the ideas more accessible to people. (The date above is when the first version of this list was posted; I continue to update it regularly.) Mister P: Multilevel regression and poststratification. The Secret Weapon: Fitting a statistical mod
ãã®ãã¼ã¸ãã覧ããã ãããããã¨ããããã¾ãã ããã§ã¯ãæ å ±éè¦æº WAIC ãç´¹ä»ãã¦ãã¾ãã ãã¤ãºæ¨æ¸¬ã®ããã®æ å ±éè¦æº(WAIC)ãå°åºããã¾ããã WAIC ã¯ï¼çã®åå¸ã確çã¢ãã«ãäºååå¸ï¼ãã©ã®ãããªå ´åã§ã使ã ãã¨ãã§ãã¾ããä»ã®è¦æºã¨ç°ãªãçè«çãªåºç¤ãæã£ã¦ãã¾ãã (0) ã¢ãã«é¸æããã¤ãã¼ãã©ã¡ã¼ã¿ã®æé©åã«ä½¿ãã¾ãã (1) 漸è¿çã«æ±åæ失ã¨åãå¹³åå¤ã¨åãåæ£ãæã¡ã¾ãã (2) WAIC ã¯ç°¡åã«è¨ç®ã§ãã¾ãã (3) çã®åå¸ã確çã¢ãã«ã§å®ç¾å¯è½ã§ãªãã¦ã使ãã¾ããäºååå¸ãçã®äºååå¸ã§ãªãã¦ã使ãã¾ãã (4) å¹³å対æ°æ失ãæå°ã«ãããã©ã¡ã¼ã¿ãã¦ãã¼ã¯ã§ãªãã¦ã使ãã¾ãã å¹³å対æ°æ失ãæå°ã«ãããã©ã¡ã¼ã¿ãç¹ç°ç¹ãå«ã解æçéåã§ãã£ã¦ã 使ãã¾ãï¼æ³¨ï¼ï¼ã (5) ãã£ãã·ã£ã¼æ å ±è¡åãæ£åã§ãªãã¦ã使ãã¾ãã (6) äºå¾åå¸ãæ£
å æ¥é¢å¦ã§è¡ãããï¼Harukara.Rã§è¡ãããï¼Stanè¶ åå¿è è¬ç¿ä¼ã®ã¹ã©ã¤ããã¹ã©ã¤ãã·ã§ã¢ã«ã¢ãããã¾ããã ããã°ã©ãã³ã°ãç¥ããªã人åãã«æ¸ãã¦ããã®ã§ï¼ãã®è¾ºããããã£ã¦ãã人ããããã¨ï¼ããé åããªèª¬æããã¦ããé¨åãããã¾ãã åãå¿çå¦è ãªã®ããã£ã¦ï¼æ±ã£ã¦ãã¢ãã«ã¯å¿ççµ±è¨çãªãã®ããå§ãã¦ãã¾ããäºé åå¸ï¼æ£è¦åå¸ï¼å¹³åå¤ã®å·®ã®æ¨è«ï¼ç¸é¢ä¿æ°ï¼å帰åæï¼ãã¸ã¹ãã£ãã¯å帰åæï¼é層ç·å½¢ã¢ãã«ã¾ã§ã§ãã ã追è¨ï¼20160517ãä¸é¨ééããå¤æ´ãã¾ããããã¨ï¼é層ç·å½¢ã¢ãã«ã¯å°ãå 容ãé£ããä¸ã«ï¼ä»åã®å 容ã¯ä¸éå端ã ã£ãã®ã§ä¸ç´ç·¨ã§ã¡ããã¨æ±ããã¨ã«ãã¾ããã ã¾ãï¼ã¹ã©ã¤ãã§ä½¿ããã¦ããstanã³ã¼ãã¯ãããããã¹ã¦ãã¦ã³ãã¼ãå¯è½ã§ãããã ï¼æåã¯ã¹ã©ã¤ãã®ã³ã¼ããèªåã§æ¸ããªããç·´ç¿ããã»ããï¼èº«ã«ã¤ãããããã¾ããã
ggmcmc is an R package aimed at providing tools for assessing and diagnosing convergence of Markov Chain Monte Carlo simulations, as well as for graphically display results from full MCMC analysis. The package also facilitates the graphical interpretation of models by providing flexible functions to plot the results against observed variables. Development ggmcmc is developed in github and has attr
å±æçãªè¿ä¼¼ã«ããMCMCã®é«éåè«æã話é¡ã«ãªãã¾ããã http://japan.zdnet.com/article/35073667/ è«æAccelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations ãèªãã§ç解ããç¯å²ã®å 容ãæ¸ãã¾ãã ã¢ã¤ã㢠ç©çç¾è±¡ã®ã¢ãã«ã¯(確ç)å¾®åæ¹ç¨å¼ã使ã£ã¦æ¸ããã¾ããããã®ãã©ã¡ã¼ã¿ãæªç¥ã®ãã¨ãå¤ããMCMCã使ã£ã¦ãã©ã¡ã¼ã¿ãæ¨å®ãããã¨ãè¡ããã¦ãã¾ãã ãããç¾å®çãªåé¡ã§ã¯ã¢ãã«ã巨大ã«ãªã£ã¦ãMCMCã®åã¹ãããã§ãããè©ä¾¡ããã®ã¯è¨ç®éãå¤ããªãããã¦ãã¾ãã¾ãã ããã§ã¢ãã«ãè¿ä¼¼ããã¨ãããã¨ãªã®ã§ããããµã³ããªã³ã°ã«è¿ä¼¼ããäºå¾åå¸ã使ãã¨ããã¢ã¤ãã¢ã¯Approximate Bayes
å°å·ãã ã¡ã¼ã«ã§éã ããã¹ã HTML é»åæ¸ç± PDF ãã¦ã³ãã¼ã ããã¹ã é»åæ¸ç± PDF ã¯ãªããããè¨äºãMyãã¼ã¸ããèªããã¨ãã§ãã¾ã ããµãã¥ã¼ã»ããå·¥ç§å¤§å¦ï¼MITï¼ã®ç 究è ãã¯ããã«ã³ãé£éã¢ã³ãã«ã«ãæ³ï¼MCMCï¼ãç¾å¨ãããæ大ã§200åé«éåã§ããã¢ã«ã´ãªãºã ãéçºããã¨çºè¡¨ããã MITã®ãã®ã¢ã«ã´ãªãºã ã¯ãã»ã¨ãã©ãã¹ã¦ã®è¨ç®ã¢ãã«ã«é©ç¨ã§ããããã®ã¢ã«ã´ãªãºã ã®ç®çã¯ãåé¡ä¸ã«åå¨ããæªç¥ã®ãã©ã¡ã¼ã¿ã®å¤ãå±æè¿ä¼¼ããæ¨å®ãããã¨ã§ã対象ã¨ãªã解ãçµãè¾¼ãã¨ãããã®ã ã çºè¡¨ã®ãªãã§ãMITã¯ãã®ã¢ã«ã´ãªãºã ã«ã¤ãã¦ä»¥ä¸ã®ããã«è¿°ã¹ã¦ããã ãã®ã¢ã«ã´ãªãºã ã¯ãã¢ãã«ãè¤æ°åå®è¡ãããªãã§ãããã¤ãã®é©åãªãã¼ã¿ç¹ãçµã¿åããã¦ãããã¨ã«ãã解ãããªãã¡æªç¥ã®ãã©ã¡ã¼ã¿ããããã®ç¢ºçåå¸ãã¤ã³ã¯ãªã¡ã³ã¿ã«ãªããã¡ã§çµãè¾¼ãã§ãããã®ã ããããã£ãç¹ã§ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}