ä¸é 漸åå¼ - ç¹æ§æ¹ç¨å¼ã2ã¤ã®è§£ãæã¤å ´å
ç¹æ§æ¹ç¨å¼ã¨ã¯ä½ãï¼
ãã¡ããåç §ã
Â
解ãã®å ´å
å¼(2)ã¨å¼(3)ã®æ¼¸åå¼ãçæ¯æ°åã«å¤å½¢ãããåé ã¨æ¬¡ã®é ãããããã¨ããã
\begin{eqnarray}
a_{n+1} -p a_{n} &=& q^n(a_{1} -p a_{0}) \tag{4}\\
a_{n+1} -q a_{n} &=& p^n(a_{1} -q a_{0}) \tag{5}
\end{eqnarray}
Â
å¼(5)ããå¼(4)ã辺ã å¼ãã¨ãæ¶ããã
\begin{eqnarray}
(p-q)a_n&=&p^n (a_1- q a_0)-q^n( a_1-p a_0)
\end{eqnarray}
Â
両辺ãã§å²ãã(ã¨ãã¦ããã®ã§0å²ã®å¿é ã¯ãªã)
\begin{equation}
\underline{a_n=\frac{p^n (a_1- q a_0)-q^n( a_1-p a_0)}{p-q}}
\end{equation}
ä¸è¬é ãæ±ããããã
ãã¹ãã§è§£ãã¨ãã«ã¯å¼(4)ã¨å¼(5)ã®æ®µéã§æ°å¤ãä»£å ¥ããæ¹ãè¨ç®ã楽ã§ãããã代æ°ã§ã®è¨è¿°ãç¾ããã
Â
ä¾é¡
以ä¸ã®æ¼¸åå¼ã解ããä¸è¬é
ãæ±ããã
\begin{eqnarray}
a_{n+2}&=&5a_{n+1}-6a_n\\
a_0&=&5\\
a_1&=&7
\end{eqnarray}
Â
ç¹æ§æ¹ç¨å¼ã¯ã
å æ°å解ãã¦ãªã®ã§ã解ã¯ã§ããã
Â
çæ¯æ°åã«å¤æããã
\begin{eqnarray}
a_{n+1}-2a_n&=&3^n(7-2\cdot5)\\
a_{n+1}-3a_n&=&2^n(7-3\cdot5)
\end{eqnarray}
Â
ã«ãã³å ãè¨ç®ããã
\begin{eqnarray}
a_{n+1}-2a_n&=&-3 \cdot 3^n\\
a_{n+1}-3a_n&=&-8 \cdot2^n
\end{eqnarray}
Â
ä¸ã®å¼ããä¸ã®å¼ã辺ã å¼ãã
\begin{equation}
\underline{a_n=8 \cdot 2^n -3 \cdot 3^n}
\end{equation}
ä¸è¬é ãæ±ããããã
Â
æ¤ç®ãã¦ã¿ãã漸åå¼ããã
\begin{eqnarray}
a_0&=&5\\
a_1&=&7\\
a_2&=&5\cdot7-6\cdot5=35-30=5\\
a_3&=&5\cdot5-6\cdot7=25-42=-17\\
\end{eqnarray}
Â
ä¸è¬é ããã
\begin{eqnarray}
a_0&=&8\cdot2^0-3\cdot3^0=8-3=5\\
a_1&=&8\cdot2^1-3\cdot3^1=16-9=7\\
a_2&=&8\cdot2^2-3\cdot3^2=32-27=5\\
a_3&=&8\cdot2^3-3\cdot3^3=64-81=-17\\
\end{eqnarray}
ããã¾ã§ã®ã®çµæãä¸è´ãã¦ãããã¨ã確èªã§ããã