数値解析
(数値解法 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/15 20:00 UTC 版)
数値解析(すうちかいせき、英: numerical analysis)は、計算機代数とは対照的に、数値計算によって解析学の問題を近似的に解く数学の一分野である。 (狭義には「数値解析」とは「数値計算方法」の数学的な解析・分析(mathematical analysis of numerical methods)のことであり,広義の意味=数値を使って問題の解析・分析を行う(Analysis by numerical methods)・式でなく数値で計算を行う「数値計算」(numerical computation, numerical calculation)全般とは区別される。しかし世間一般には両者はあまり区別されていない。理学工学等の分野の応用として計算を行う場合には普通は広義の意味で「数値解析」と称している。このWikipediaでも区別がなされていない。本来この頁のタイトルは「数値解析」ではなくて「数値計算」とする方が正しい。その場合の「数値計算」とは問題を解くための計算を数式を使って行うのではなくてもっぱら数値を使って行うのだという意味合いがある。)
- 1 数値解析とは
- 2 数値解析の概要
数値解法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/24 01:43 UTC 版)
ここでは、数値計算アルゴリズム(基本的には四則演算の無限回の組み合わせ)による解法について述べる。計算機による解法を想定しているが、現在の計算機が本来できる計算としては整数環での演算と論理演算の有限回操作であるため、厳密な意味で計算機では解く事はできない。しかし、浮動小数点数という擬似的な実数表現や複素数の実行列表現なども可能であることより、複素数体が扱えるものと見なす。また与えられた正の値の誤差範囲に収まるまでの反復回数が有限回という保証があるならば、実質無限回の操作も許されると見なす。そういう意味での、近似的な数値解法である。 数値計算アルゴリズムによる解法は、様々な手法が提案され、現在もその進化を続けている。ここでは、ベーシックな手法をいくつか記す。 ニュートン法による解法は、解の候補となる初期値を与え、その解の候補に接する直線を元の代数方程式の近似とみなし、その一次方程式を解くことにより次の解の候補を求める方法である。この操作を、解の候補が予め与えた誤差以内に収まると判定されたならば、解の候補を解の一つとみなし、減次 (deflation) を行い次の方程式を求め、再びニュートン法を施す。(収束するならば)二次収束することが解っており、数値解法としては早い。ただし、重根に対する収束性の悪さ、初期値によっては収束しない場合も有り得ること、複素数の場合の処理の煩わしさなどがあり、直接ニュートン法で解くという局面は少ない。 複素数の扱いということではベアストウ法という解法がある。これは、二次式の因数分解を行うという操作をコンセプトとする。
※この「数値解法」の解説は、「代数方程式」の解説の一部です。
「数値解法」を含む「代数方程式」の記事については、「代数方程式」の概要を参照ください。
「数値解法」の例文・使い方・用例・文例
- 数値解法という,方程式の解法
- 数値解法のページへのリンク