In set theory, ZermeloâFraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, ZermeloâFraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundl
Recent comments Jan 25 2025: tag 01FJ by Soergel Jan 24 2025: tag 013T by ElÃas Guisado Jan 24 2025: tag 013T by ElÃas Guisado Jan 24 2025: tag 0807 by Alex T Jan 24 2025: tag 013T by ElÃas Guisado Recent commits 18 Sep 2024: Refer to preprint Gabber-Zavyalov 13 Sep 2024: Better flatness criterion 13 Sep 2024: Add missing hypothesis 12 Sep 2024: Another flatness criterion 12 Sep 2024: Improve the
ã³ã³ãã³ããããã¯ãæå¹ã§ãããã¨ãæ¤ç¥ãã¾ããã ãã®ãµã¤ããå©ç¨ããã«ã¯ãã³ã³ãã³ããããã¯æ©è½ï¼åºåãããã¯æ©è½ãæã¤æ¡å¼µæ©è½çï¼ãç¡å¹ã«ãã¦ãã¼ã¸ãåèªã¿è¾¼ã¿ãã¦ãã ããã â
社å ã®æå¿ã§æ©æ¢°å¦ç¿ãæ°å¦ã®åå¼·ä¼ãããã¤ããã£ã¦ãã¾ãï¼ç§ä»¥å¤ã®æ¹ã主å¬ãã¦ãããã®ãããï¼ãã¨ãã«çç³»ã§ã¯ãªãæ¹ãåå ããã¦ãã¾ããããã¡ãã¨é å¼µãã°ã ãã ãæ©æ¢°å¦ç¿ãã§ããããã«ãªãã¨ãããã¨ãããã£ã¦ããã®ã§ã¡ã¢ãã¦ããã¾ãã ãªããæ©æ¢°å¦ç¿ãã¨ããããå®è£ ããã ãã ã£ãããã£ã¨ç°¡åã«å¦ã¶æ¹æ³ããããããããä»åã¯ããã¾ã§æ£æ»æ³ã§æ©æ¢°å¦ç¿ãåå¼·ãããã¨ãã観ç¹ã§ã®æ¸ç±ã®é¸æã¨ãªã£ã¦ãã¾ããæ¥ãã°åãã¨ããè¨èãããããã«ãç¦ã£ã¦ææãæ±ããªãã®ã§ããã°å°éã«é å¼µãã»ããå¾ã å¿ç¨ãå¹ãã¦è¯ãã¨ãããã¨ãããã¾ãã é«å°ã®æ°å¦ ããããæ°å¦ãã§ããªãã¨ããæ¹ã¯é«æ ¡ã®æ°å¦ãããããçè§£ãæªãããã¨ã«ãªã£ã¦ããã¨æãã¾ãããé«å°ã®æ°å¦ãã¯ä¸å¦æ°å¦ã¾ã§ã®åæç¥èã§èªããæç§æ¸ã§ãããããããä¾é¡ãçè§£ã®å©ãã«ãªãç·´ç¿åé¡ã夿°ç¨æããã¦ããããããã¡ãã¨åé¡ãè§£ãã¦ããã°ç¡çãªãé«å°ã®æ°å¦(
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? TensorFlowã¯ä¸»ã«æ©æ¢°å¦ç¿ãç¹ã«å¤å±¤ãã¥ã¼ã©ã«ãããã¯ã¼ã¯(ãã£ã¼ãã©ã¼ãã³ã°)ãå®è£ ããããã®ã©ã¤ãã©ãªã«ãªãã¾ããããã®åºæ¬çãªä»çµã¿ãçè§£ããã®ã«ããããé£ãã話ã¯ç¹ã«å¿ è¦ããã¾ããã æ¬è¨äºã§ã¯ãTensorFlowã®ä»çµã¿ããç®æ°ç¨åº¦ã®ç°¡åãªè¨ç®ããã¼ã¹ã«ç´è§£ãã¦ããããã¨æãã¾ãã TensorFlowã®ç¹å¾´ åãã«ãTensorFlowã®ç¹å¾´ã«ã¤ãã¦ã¾ã¨ãã¦ããããã¨æãã¾ãã TensorFlowã¯ããã®ååã®éãTensor(夿¬¡å é åãè¡åãªã©ã«ç¸å½)ã®Flow(è¨ç®å¦ç)ãè¨è¿°ããããã®ãã¼ã«ã§ãããã®ç¹å¾´
çºå£²ããããããªã大ããªåé¿ãå¼ãã§ããããæ°å¦ãã身ä½ãããå¾ ã¡ããã®å®¢å¡ã¬ãã¥ã¼ç¬¬ä¸å¼¾ã¯ãã¯ã¦ãªæ ªå¼ä¼ç¤¾ã®è¿è¤æ·³ä¹ãããç»å ´ããæ°å¦ã¯æ ç·ã ãã¨ããç¬ç«ç ç©¶è ã»æ£®ç°ççã®è¨èãèããæãè¿è¤ãããç´æçã«æãããã®ã¨ã¯ä½ã ã£ãã®ãï¼ãï¼HONZç·¨éé¨ï¼ â»å®¢å¡ã¬ãã¥ã¼ç¬¬ä¸å¼¾ã第äºå¼¾ 森ç°ãããåãã¦æ¸ããæ¬ããæ°å¦ãã身ä½ãã ãããããæ¬ãå±ãããã®ã§ãã¨ãä¼ç¤¾ã®è¿ãã¾ã§è¶³ãéãã§ããã¦ãã©ã³ããå ±ã«ããªããæ¸¡ãã¦ãããæ¬ã æ§æ³ãã§ãã¦ããæ¸ãä¸ããã®ã«4å¹´ããã£ãã¨ããæ¬ã ãã¨ãã¨ãæç« ãæ¸ãã¨ãã«ã¯ã¨ãã§ããªãéä¸ãã¦ãä¸å¯§ã«è¨èãç©ã¿ä¸ãã¦ãä½åº¦ãä½åº¦ãèªãã§å³ããããããªãã¹ã«ã¡ã¿ãããªç²¾ç·»ãªæç« ãæ¸ãæ£®ç°ããããåãã¦1åã®æ¬ãæ¸ãããã¨ããæ¬ã ããããã ãã§ãèªãåãããããã¯ãããæ¬ã ãã¨ãããã¨ã¯åãã£ã¦ããã ãããã¨ããã®ã¯ãã¨ã«ãããä¸èº«äºã ã®åã«ãé常ã§
ãã®è¨äºã¯ãªããªã® ãã»ã³ã¿ã¼è©¦é¨ç¨åº¦ã§ããã°ãæ°å¼ã¨æç« ãæç´ã«ããã°ã©ã ã«è½ã¨ããããã¨ããã§ããã°ãæ¨ä»ã®ãã¼ã«ãç¨ãã¦ãä½ãéããã¨ãæ©æ¢°çã«åé¡ãè§£ããã¨ãåºæ¥ããã¨ãããã¨ã®ä¸»å¼µ ç§å¦è¨ç®ã©ã¤ãã©ãª(ç¹ã«Sympy)ã®å¸æ å°æ¥ãåãå ããªããªã£ãã¨ãããç§ãç§ãããããã¨ãã§ãããã§ãï¼ï¼ãã£ã¦è¨ãã°ã©ãããæ¾ã£ã¦ãããªãããªããã¨ãã夢 使ç¨ãããã® Python (3ç³») Scipy.org ã«è¼ã£ã¦ããç§å¦è¨ç®ã©ã¤ãã©ãªå ¨ã¦(ã¿ã°ãè¶³ããªãï¼ï¼) å ±ã«ã2015å¹´6æç¾æç¹ã§ã®ææ°çã使ç¨ãã¾ã(ç¹ã«ãScipyã¯ä»å¹´1æã«å®è£ ãããææ°çã®æ©è½ã使ç¨ããã®ã§æ³¨æãã¦ãã ãã)ã æ°ã ã®ã©ã¤ãã©ãªãä¸ã¤ä¸ã¤ã¤ã³ã¹ãã¼ã«ããã®ã¯ãããé¢åã§ããé¢åãªã®ã§ãæåã©ãããåºããããã±ã¼ã¸ã®ãããªãã®ãè¤æ°åå¨ãã¾ãã å人çã«ã¯ãã¤ãAnacondaã使ã£ã¦ã¾ã¨ãã¦ã¤ã³ã¹ãã¼
ãæ°å¦ãã身ä½ãã¯ãç¬ç«ç ç©¶è ã»æ£®ç°ççæ°ããæ°å¦ã¨ã¯ä½ããããã¦ãæ°å¦ã«ã¨ã£ã¦èº«ä½ã¨ã¯ä½ãããèªåããªããæ°å¦ã®æ´å²ã追ããããä¸åã§ããããã®æµãã¯ãã¢ã©ã³ã»ãã¥ã¼ãªã³ã°ã¨å²¡æ½ã®äºäººã¸ã¨è¾¿ãçãã ããã¦ãã®æ£®ç°æ°ã®è©¦ã¿ãå¿æ´ãã¹ããäºäººã®åºå®¢ã客å¡ã¬ãã¥ã¼ã«åä¹ããä¸ãããä¸äººç®ã¯ç§å¦å²å¦ãå°éã¨ããåãããã«èº«ä½è«ã¸ã¢ããã¼ãããä¸è¥¿ 風æ¾ãããå½¼ã¯æ¬æ¸ããæ ¼éã®æ¸ãã¨è©ããã¡ãªã¿ã«2人ç®ã¯10æ21æ¥ã«æ²è¼ãä¹ããæå¾ ãï¼HONZç·¨éé¨ï¼ ç§ãã¡ãå¿ãé«é³´ãããã®ã¯ããã¤ããã¯ãã¾ãã®ç¬éãã§ããã æ°å¦ã¨ãã宿ãããç¾ãã建ç¯ç©ãçºããããã¦å¦ã¶ã¨ããç§ãã¡ã¯ãã®èµ·æºãå¿å´ãã¦ãããããããããã«ã¯ç¢ºãã«ãä¸å®ã«ãªãã»ã©ã®æªç¥ã¨å¯è½æ§ã«éããããã¯ãã¾ãã®ç¬éããããã¦ããããèµ°ãåºãç©èªããã£ãã®ã ã æ¬æ¸ã¯ããæ°å¦ãã¯ãã¾ãç¬éãããã®é¢¨æ¯ãå£éè¦ãã¦ããããããã¯ãçã¾
æ°å¦ã¨ã¯ããæ£ãããã¨ããããã¤ãã®åæããåºçºãã¦ããæ£ãããã¨è¨ãããã®ãè«ççã«å°åºãã¦ããå¦åã§ãã æ§ã ãªåé¡ã«å¯¾ãã¦ããã®çãããæ£ããããã¨ã説æã§ããããã«ä¸ç·ã«å¦ãã§ããã¾ãããï¼ ç¬¬1æ(å ¨13話)ã§ã¯ãæ°å¦ã®åºæ¬çãªæ§é ããå§ã¾ããå¿ç¨ããããå®ç¨çãªæ°å¦ã解説ãã¾ãã 第2æä»¥éã¯ã第1æã§è§£èª¬ããæ¦å¿µãä¸è¬åãããæ·±ãè¸ã¿è¾¼ãã§ãå¹ åºãè¦ç¹ã§æ°å¦ãæ±ããããã«ãã¦ããã¾ãã
å¹³ç´ ã¯æ ªå¼ä¼ç¤¾ã©ã¤ããã¢ã®ãµã¼ãã¹ã ãå©ç¨ããã ããããã¨ããããã¾ãã æè¨åãã¥ã¼ã¹ãµã¤ããBLOGOSãã¯ã 2022å¹´5æ31æ¥ããã¡ã¾ãã¦ã ãµã¼ãã¹ã®æä¾ãçµäºãããã¾ããã ä¸é¨ã®ãªãªã¸ãã«è¨äºã«ã¤ãã¾ãã¦ã¯ã livedoorãã¥ã¼ã¹å ã® ãBLOGOSã®è¨äºä¸è¦§ãããã覧ããã ãã¾ãã é·ãããå©ç¨ããã ãããããã¨ããããã¾ããã ãµã¼ãã¹çµäºã«é¢ãããåãåããã¯ã ä¸è¨ã¾ã§ãé¡ããããã¾ãã ãåãåãã
This webpage was generated by the domain owner using Sedo Domain Parking. Disclaimer: Sedo maintains no relationship with third party advertisers. Reference to any specific service or trade mark is not controlled by Sedo nor does it constitute or imply its association, endorsement or recommendation.
(2015/11/19ãè¨äºãä¿®æ£ãããã¾ããã) ç®æ¬¡ ç·å½¢å¤æ 主æååæï¼PCAï¼ å ±åæ£è¡å åºåºå¤æ ã¨ã³ãããã¼ã¨æ å ±ã®åå¾ ã¨ã«ããã³ã¼ããæ¬²ããæ¹ã¸ ãã®ä»ã®åèè³æ æ¬ç¨¿ã¯åºæãã¯ãã«ã¨è¡åã¨ã®é¢ä¿æ§ã«ã¤ãã¦ãå¹³æãªè¨èã§ãæ°å¦ã«ãã¾ã詳ãããªãã¦ãåããããã«æ¸ãã¦ã¿ã¾ããããã®çºæ³ã«åºã¥ãã¦ãPCAãå ±åæ£ãæ å ±ã¨ã³ãããã¼ã«ã¤ãã¦ã説æãã¾ãã åºæãã¯ãã«ã¯è±èªã§ãeigenvectorãã§ããããã® eigen ã¯ãã¤ãèªã§ãããã®ãã®ã ããæã¤ãã¨ããæå³ã§ããä¾ãã°ãã¤ãèªã®ãmein eigenes Autoãã¯ããã»ããªãã¬ç§ãæã¤è»ãã¨ãããã¥ã¢ã³ã¹ã§ãããã®ããã«einenã¯ã2ã¤ã®ãã®ã®éã«åå¨ããç¹å¥ãªé¢ä¿æ§ãæå³ãã¾ããç¬ç¹ãç¹å¾´çããã®æ§è³ªã端çã«ç¤ºããã®ã¨ãããã¨ã§ãããã®è»ããã®ãã¯ãã«ã¯ãç§ã ãã®ãã®ã§ãä»ã®èª°ã®ãã®ã§ãããã¾ããã ç·
ãã¾ã«ç¾ä»£æ°å¦ã®æ¬ãèªããã¨ã«ãã¦ãããä»ãå ããã¨ãçè§£ã§ããªãã¦ããæä»£ã®æå ç«¯ã®æ°å¦ã解説ãããã¨ããæ¬ã¯èªããã¨ã«ãã¦ãããããã§ã©ããã¨ããã¨ãæ£ç´ãªã¨ãããããã¦ãã¯ãã£ã±ãããããªãã åããã¨ã¯ç©çå¦ãçç©å¦ã»å»å¦ã«ã¤ãã¦ãè¨ããããã ããããããããããªããã«åãåãã®ã諦ãã¡ããã®ãããªãã¨ãªãããã ãªã¨æã£ã¦ããããã®æ¬ãã¨ãã¯ã¼ãã»ãã¬ã³ã±ã«ã»èãæ°å¦ã®å¤§çµ±ä¸ã«æãããåãããã£ã¡ããç¾ä»£æ°å¦ã§ãããããããã¯ç¡çã ããããã®æ·å± ã®é«ãã§ãããã§ãã¡ãã£ã¨æã«ã¨ã£ã¦ã¿ããæ°åã«ãããã®ã¯ã鿍è«ããã®ç¿»è¨³ã ããã ãæ¥æ¬èªã¨ãã¦èªã¿ããããå 容ãçè§£ãã¦ãã彼女ãªãã§ã¯ã®èªç¶ããããããã25年以ä¸ãåã«ãªããã彼女ãç©çå¦ã®ã¢ã«ãããºã ãã翻訳è ãªããã¨ãã¦ãããããæ°å¦ã¯ã徿ã ã£ãã®ã§ããã¨èãããã¨ããããã©ã°ã©ã³ã¸ã¢ã³ãªãããé£ããã¨æããªãã£ãã¨çãã¦ãã
2015-07-31 æ±å¤§çãé¸ã¶å¥½ããªæ°å¼ãã¹ã7 æ±å¤§ æ°å¦ãç©çã£ã¦é£ããã§ãããï¼æç§æ¸ãåãããçè§£ãã¦ãããã¨ããã¨éª¨ãæãã¦æãåºãããã«ãªããã¨ãå¤ãã§ãï¼ã§ãï¼çè§£ã§ããæã®åã³ãã²ã¨ããã§ãï¼ ããã§ï¼ç¾å½¹æ±å¤§çã®ç§ãï¼å¦é¨åçã§å¦ã¶æ°å¼ã®ä¸ãããæ°ã«å ¥ãã®ãã®ãé¸ãã§ã¿ã¾ããï¼ é£ãããã®ãããã¾ããï¼ã¿ãªãããç©çãæ°å¦ã«èå³ãæã£ã¦ãããã°å¹¸ãã§ãï¼ 1ï¼ããã¨ã»ã¹ãã¼ã¯ã¹æ¹ç¨å¼ ï¼ããã¯éå§ç¸®æ§æµä½ã®å ´åï¼ããã¨ã»ã¹ãã¼ã¯ã¹æ¹ç¨å¼ã¯æµä½ã®éåæ¹ç¨å¼ã§ããï¼èªç©ºæ©ã®ç¿¼å¨ãã®æµããçä½å ã®è¡æµã®æµããªã©ï¼å¤ãã®ç¾è±¡ã決å®ã¥ããå¼ã§ãï¼å¤ãã®å¤§å¦çãå¦é¨æä»£ã«å¦ã¶åºæ¬çãªå¼ãªã®ã§ããï¼ãã¾ã ãã®è§£æçãªè§£æ³ã¯ç¥ããã¦ãããï¼æµä½ã®è§£æã«ã¯æ°å¤çãªææ³ãç¨ãããã¦ãã¾ãï¼ã¡ãªã¿ã«ï¼ãã®æ°å¼ã¯è§£ãã¨1ååããããããã¬ãã¢ã åé¡ãã®ä¸ã¤ã«ããªã£ã¦ãã¾ã ï¼ããã¨-ã¹ãã¼ã¯
調ã¹ç©ãããã¨ãã«Wikipediaã®åå¨ã¯çµ¶å¤§ã ãã©ããªäºç´°ãªãã®ã«å¯¾ãã¦ã詳ãã説æãè¼ã£ã¦ããã ã ãã©ãæ°å¦ãç©çãªã©ã®çå·¥ç³»ã®æç§æ¸ã«ç»å ´ãããã¼ã¯ã¼ãã«ã¤ãã¦ã¯ãWikipediaã®èª¬æã¯ã»ã¨ãã©å½¹ã«ç«ããªãã å ·ä½ä¾ãããã¤ãã â ãã¼ãªã¨å¤æ æ°å¦ã«ããã¦ãã¼ãªã¨å¤æï¼ãã¼ãªã¨ã¸ããããè±èª: Fourier transform; FTï¼ã¯å®å¤æ°ã®è¤ç´ ã¾ãã¯å®æ°å¤å½æ°ãå¥ã®å種ã®å½æ°ã«åã夿ã§ããã夿å¾ã®å½æ°ã¯ãã¨ã®å½æ°ã«å«ã¾ãã卿³¢æ°ãè¨è¿°ãããã°ãã°ãã¨ã®å½æ°ã®å¨æ³¢æ°é åè¡¨ç¾ (frequency domain representation) ã¨å¼ã°ãããã»ã» http://ja.wikipedia.org/wiki/%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B â NPå°é£ NPå°é£ï¼-ãããªããN
æ©æ¢°å¦ç¿ï¼ãã¼ã¿ãã¤ãã³ã°ã®ããã¯ã°ã©ã¦ã³ãã«ããæ°å¼ããã¡ãã¨å¦ãã ããå®éã«ã¢ã«ã´ãªãºã ãã³ã¼ãã¨ãã¦æ¸ãã¦ã¿ãã¨ã¨ã¦ãåãçãã¨æãã¾ãã便å©ãªããã±ã¼ã¸ããã¼ã«ãè²ã ã¨ããã¾ãããã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ã ã£ãã製åéçºã®ããã«ç¬èªã«å®è£ ã§ããããã«ãªãããã£ã¦æããã®ã§ãããï¼ ãããã¯ã·ã§ã³å©ç¨ãè¦è¶ãã¦ããã¤ãå¦ã¹ãã½ããã¦ã§ã¢ç°å¢ã¨ãã¦åè£ã¯ä»¥ä¸ããªã¨æãã¾ãã Pythonï¼Pandas+Scipy/Numpy/SkLrnï¼ C++ï¼Rcppããã±ã¼ã¸ãJubutusãã©ã°ã¤ã³ï¼ Julia å ¨é¨è©¦ãã¦ã¿ããã®ã§ããã¨ããããé¢ç½ãããªJuliaã§ç°å¢æ§ç¯ãã¦ã¿ã¾ããï¼ãã¿ã¾ãããç§ã¯Windows+Ubuntuãªã¦ã¼ã¶ãªã®ã§Macãä»ã®Linuxã«ã¤ãã¦ã¯ããåèã«ãªãã°å¹¸ãã§ãï¼ IDE(çµ±åéçºç°å¢) Juliaã¯Shell+Emacsã§ã便å©ã ã¨æãã¾ããWindo
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}