ãããã¯ã¼ã¯ã®è¨æ¸¬ã¨è§£æ ã¤ã³ã¿ã¼ãããã®ä½¿ããæ¹ããããã¯ã¼ã¯ã®æåãææ¡ããäºã¯ããããã¯ã¼ã¯ãéç¨ãããã®æè¡éçºãè¡ã ããã«æ¬ ããã¾ããããããã観測ã§å¾ããããã¼ã¿éã¯è¨å¤§ã§ãããã¤ãºãå¤ããã¾ãã観測ã§ããã®ã¯æ¥µãã¦éãããé¨åã§ããããã¾ãããããã§ãè¨å¤§ãªãã¼ã¿ããæå³ã®ããæ å ±ãæ½åºããããé¨åçãªè¦³æ¸¬ããããä¸è¬çãªå¾åãæ¨æ¸¬ããäºãå¿ è¦ã¨ãªãã¾ãã... ã¤ã³ã¿ã¼ãããåºç¤æè¡ éãã¦ãå®å ¨ã§ãä¿¡é ¼æ§ãé«ãã使ããããããªã©ãã¤ã³ã¿ã¼ããããµã¼ãã¹ã¸ã®è¦æ±ã¯ã¾ãã¾ãé«ã¾ã£ã¦ãã¾ãããããã®è¦æ±ã«å¿ããããã«ãã¤ã³ã¿ã¼ãããã® åºç¤æè¡ãæ¥ã é²æ©ãã¦ãã¾ãããã¾ãã¤ã³ã¿ã¼ãããã¯ã¤ãªããã ãã®ãµã¼ãã¹ã§ã¯ãªããé«åº¦ã§è¤éãªæ©è½ãåãã社ä¼åºç¤ã¨ãªãã¾ãããIIJæè¡ç 究æã¯ãã¤ã³ã¿ã¼ãããã®åºç¤ã¨ãã¦å®ç¾ãæå¾ ãããæ©è½ãæä¾ããããã«ããã¾ãã¾ãªæè¡èª²é¡ã«åãçµãã§
å é±æ«ãekmettåå¼·ä¼ãªãä¼ãéããã¾ããã ï¼çºèµ·äººã®@tanakhããããããã¨ããããã¾ãï¼ï¼ ekmettåå¼·ä¼ (partake) ekmettã¨ã¯ãHaskellãScalaã«ã¦éè¦ãªlibrary群ããããããªãã¹ãã¼ãã§ä½ãä¸ãã¦ããEdward Kmmetããã®ãã¨ã§ãã ekmett (github) åå¼·ä¼ã«ã¯ekmettããããããªãã£ããã§åå ããã¦ãã¦ãä¼ã®æå¾ã¯è³ªå大ä¼ã¨ãªãã¾ããã ãã®ä¸ã§ãç§ã ãKmettããã®æ½è±¡åã®æºæ³ã¯ã©ãã«ããã®ãï¼ã ã¨å°ããã¨ããï¼@nushioãããé訳ãããã¨ããããã¾ãï¼ï¼ ãï¼æ訳ããã¨ï¼åè«ã ã¨ã®ãçãã§ããã @taketon_ Exactly. =) Category theory is just a great source of generalized tools that people have b
ã¯ããã« é¢æ°åã¨ããã°ã¢ãããã¢ããã¨ããã°é£ããã¨ããäºãå··ã§è¨ããã¦ãã¾ããããããªãã¢ãããç解ãããã¨ããããé£ããæããã ãã§ãåè«ããé åºã追ã£ã¦ç解ãã¦ããã°å ¨ç¶é£ããç¡ããã ãã£ã¦äºãåãã£ã¦è²°ããã°ãããªãã¨æãæ¸ãã¦è¦ããã¨ã«ãã¾ããã ãã ãåè«ã¨ãã£ã¦ãé©ç¨ç¯å²ãã¨ã£ã¦ãåºããå¿ç¨ç·¨ã«ãªãã¨åãããããªããªã£ã¦ããã®ã§ãããã§ã¯ããã°ã©ãã³ã°åéã«ç¹åããFP(functional programing)åè«*1ã«ã¤ãã¦æ¸ãã¾ãã ã¾ãã説æãç°¡åã«ããçºã«ç´°ããé¨åãããããçç¥ãã¦ãã¾ããå¦è¡çãªå®ç¾©ã¨ãã¦ã¯æ£ç¢ºã§ã¯ãªãã®ã§ããã®ã¨ã³ããªã®èª¬æã¯å¤§ä½åã£ã¦ãä½ã®æ°æã¡ã§èªãã§ãã ãããã å°ãã¼ãã¯åè«ã®è©³ããäºã¯ãã£ã±ãåãããªãã®ã§ãå¦åçãªè©±ãæ¯ããã¦ãåçã§ãã¾ããï½·ï¾ï½¯ åã£ã¦ãªããªã®ï¼ åè«ã¨è¨ãã°ãåã§ãã åã£ã¦ä½ãªã®ãã¨ããã¨ã対象(obje
2. â¾èªâ¼°å·±ç´¹ä» â¢â¯ â½æ¥æ¬Javaã¦ã¼ã¶ã°ã«ã¼ãã â¢â¯ ä»£è¡¨ä½ â¢â¯ XML SmartDoc (XMLâ½ææ¸å¦çã·ã¹ãã ) â¢â¯ Relaxer (XML/Javaã¹ãã¼ãã³ã³ãã¤ã©) â¢â¯ éçºä¸ â¢â¯ SimpleModeler (Scala DSLã¢ãã«ã³ã³ãã¤ã©) â¢â¯ SmartDox (â½ææ¸å¦çã·ã¹ãã ) â¢â¯ g3 (ãµã¼ãã¹ããã·ã¥ã¢ãããã¬ã¼ã ã¯ã¼ã¯) â¢â¯ g4 (Androidã¢ããªã±ã¼ã·ã§ã³ãã¬ã¼ã ã¯ã¼ã¯) â¢â¯ è¿è â¢â¯ ãä¸æµâ¼¯å·¥ç¨UMLã¢ããªã³ã°ã(â½æ¥çµBP) â¢â¯ ããã¤ã³ããããã§ã¯ãããã¢ããªã³ã°è¬åº§ã(ç¿æ³³ç¤¾) â¢â¯ ããã¯ãã®Scalaã(Softbank Creative) 4. é¢é£ãµã¤ã â¢â¯ Modegramming Style (ããã¹ãDSLé§åéçºã ãã¼ãã«ããããã°) â¢â¯ http://modegramming.b
2. â¾èªâ¼°å·±ç´¹ä» â¢â¯ (æ ª)å BusinessPlaceãâ½æ¥æ¬Javaã¦ã¼ã¶ã°ã«ã¼ãå¯ä¼â»â¾§é·ã edge2.cc主宰ã â¢â¯ ä»£è¡¨ä½ â¢â¯ XML SmartDoc (XMLâ½ææ¸å¦çã·ã¹ãã ) â¢â¯ Relaxer (XML/Javaã¹ãã¼ãã³ã³ãã¤ã©) â¢â¯ éçºä¸ â¢â¯ SimpleModeler (Scala DSLã¢ãã«ã³ã³ãã¤ã©) â¢â¯ SmartDox (â½ææ¸å¦çã·ã¹ãã ) â¢â¯ g3 (ãµã¼ãã¹ããã·ã¥ã¢ãããã¬ã¼ã ã¯ã¼ã¯) â¢â¯ g4 (Androidã¢ããªã±ã¼ã·ã§ã³ãã¬ã¼ã ã¯ã¼ã¯) â¢â¯ è¿è â¢â¯ ãä¸æµâ¼¯å·¥ç¨UMLã¢ããªã³ã°ã(â½æ¥çµBP) â¢â¯ ããã¤ã³ããããã§ã¯ãããã¢ããªã³ã°è¬åº§ã(ç¿æ³³ç¤¾) â¢â¯ ããã¯ãã®Scalaã(Softbank Creative)
è¦æ±éçºã¢ã©ã¤ã¢ã³ã¹ã®ã»ãã·ã§ã³ãObject-Functional Analysis and Design: 次ä¸ä»£ã¢ããªã³ã°ãã©ãã¤ã ã¸ã®éæ¨ãã§ä½¿ç¨ããã¹ã©ã¤ãã®èæ¯èª¬æ第3å¼¾ã§ãã ã代æ°æ§é çãã¶ã¤ã³ãã¿ã¼ã³ãã¨ãã¦ç¨æãã以ä¸ã®å³ã説æãã¾ãã é¢æ°åããã°ã©ãã³ã°ã§ã¯ãæ°å¦ç±æ¥ã®ææ³ãé§ä½¿ãã¦ããã°ã©ãã³ã°ãã¦ããã¾ãããã®ããå ã«ãªã£ãæ°å¦çè«ã«å¯¾ããæ¬è³ªçãªç解ã¯éè¦ã§ã¯ããã®ã§ãããæ°å¦çè«ä¸ã§ã¯éè¦ã§ã¯ãããã®ã®ããã°ã©ãã³ã°çã«ã¯ã»ã¨ãã©ä½¿ãããªãæ¦å¿µããæ°å¦çè«ä¸ã§ã¯æèã®è°è«ãããã°ã©ãã³ã°çã«ã¯éè¦ã¨ãããã¨ãããããã§ããããããæå³ã§ãããã°ã©ãã³ã°ã®ããã«å ã«ãªãæ°å¦çè«ãå¦ã¶ã®ã¯ãããã°ã©ãã³ã°ãã¯ããã¯ã®ç¿å¾ã¨ããæå³ã§ã¯é åãã§ãã ããã§ããããã£ãæ°å¦ç±æ¥ã®ææ³ããªãã¸ã§ã¯ãæåããã°ã©ãã«é¦´æã¿ã®æ·±ããã¶ã¤ã³ãã¿ã¼ã³ã¨ãã¦æ´åãã¦ãããã°ã©ã
è¦æ±éçºã¢ã©ã¤ã¢ã³ã¹ã®ã»ãã·ã§ã³ãObject-Functional Analysis and Design: 次ä¸ä»£ã¢ããªã³ã°ãã©ãã¤ã ã¸ã®éæ¨ãã§ä½¿ç¨ããã¹ã©ã¤ãã®èæ¯èª¬æ第2å¼¾ã§ãã ããªãã¸ã§ã¯ãã¢ããªã³ã°ãã¨ãã¦ç¨æãã以ä¸ã®å³ã説æãã¾ãã ãªãã¸ã§ã¯ãã»ã¢ãã«ã®æ§æãªãã¸ã§ã¯ãæååæ/è¨è¨ã§ã¯ã·ã¹ãã ãè²ã ãªè¦³ç¹ã®ã¢ãã«ãçµã¿åããã¦è¨è¿°ãã¾ãã ããã§ã¯ãéçæ§é ã¢ãã«ãç¶æ æ©æ¢°ã¢ãã«ãå調ã¢ãã«ã®3種é¡ã®ã¢ãã«ã«ãã軸ã«ã¤ãã¦èãã¾ãã(ããã¨ã¯å¥ã®è»¸ã§ããã¡ã¤ã³ã»ã¢ãã«ï¼ã¢ããªã±ã¼ã·ã§ã³ã»ã¢ãã«ã®è»¸ãè«çã¢ãã«ï¼ç©çã¢ãã«ã®è»¸ããããã¾ãã) éçæ§é ã¢ãã«ã¯ãã¢ãã«ã®éçæ§é ãã¯ã©ã¹å³ãã³ã³ãã¼ãã³ãå³ãªã©ãç¨ãã¦è¨è¿°ãã¾ãããã¡ã¤ã³ã»ã¢ãã«ãé åã¢ãã«ã®ä¸æ ¸ã¢ãã«ã¨ãã¦ç¨ãããã¾ãã ç¶æ æ©æ¢°ã¢ãã«ã¯ããªãã¸ã§ã¯ãã®ç¶æ é·ç§»ã¢ãã«ãç¶æ æ©æ¢°å³ãç¶æ é·ç§»è¡¨ã§è¨è¿°ãã¾
If you are a former Java developer and have become a Scala fanboy like me, you will probably sooner or later encounter terms like monad, functor or other mysteries from the realm of category theory which make you feel like a little dummkopf (screamingly funny for a German like me, according to www.dict.cc this seems to be a proper English verb). If you already feel comfortable with these, donât wa
ããã¯ãTypesafe 社㮠Director Professional Services ã§ãã Heiko Seeberger æ°ã«ãããIntroduction to Category Theory in Scalaãã®ç¿»è¨³æã§ãã誤訳ã誤è¨ãªã©ãããã¾ãããã æ¥æ¬Scalaã¦ã¼ã¶ã¼ãºã°ã«ã¼ãã®ãåè«å ¥éãã¬ãã¥ã¼ã®ãé¡ãããããã¯ã«æ稿ãã¦ããã ããã@quassia88 ã«ãé£çµ¡ãã ããã ããåãåã¿ããã«ã以åã¯Javaãã£ããããã¼ã§ãScalaã®ãã¡ã³ã«ãªã£ãã°ãããªããåã¯å¤åé ããæ©ãããã¢ããããé¢æããã®ãåè«ã®åéãããã£ã¦ããè¬ã«ééããã ããããããã£ãæªç¥ã®æ¦å¿µã¯ãåããèªåãæãããã¾ã¬ããªããããªãããã¨ããæ°åã«ããããã¨ã ã¨æããããåãããããæ¦å¿µã«æ¢ã«è¦ªããã§ãããªããæéãç¡é§ã«ãããã¨ã¯ãªããããã«ãã®ãã¼ã¸ãéãã¦ã»ãããããããã§ãª
Schematic representation of a category with objects X, Y, Z and morphisms f, g, g â f. (The category's three identity morphisms 1X, 1Y and 1Z, if explicitly represented, would appear as three arrows, from the letters X, Y, and Z to themselves, respectively.) Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac La
This article is about the mathematical concept. For other uses, see Functor (disambiguation). "Functoriality" redirects here. For the Langlands functoriality conjecture in number theory, see Langlands program § Functoriality. In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such a
"Natural operation" redirects here. For the natural sum and natural product on ordinals, see Ordinal arithmetic § Natural operations. This article is about natural transformations in category theory. For the natural competence of bacteria to take up foreign DNA, see Genetic transformation. For other uses, see Transformation (mathematics) (disambiguation). In category theory, a branch of mathematic
対象ã®éã¾ããå°ã®éã¾ããéåã¨ãªããããªåã¯å°ããåï¼small categoryï¼ã¨å¼ã³ã¾ããããã§ã¯ãå°ããªåã®ãªãã§ãç¹ã«ã対象éåãå°éåã身è¿ãªã¢ãã§ãããããªåãå¯æãåã¨ãã¦ç´¹ä»ãã¾ãã å å®¹ï¼ ãããå ç´ç©ãç´åãå§å¯¾è±¡ãçµå¯¾è±¡ ã¢ãã¤ãç©ã¨ã¢ãã¤ãéæ§é ããã²ã¨ã¤ã®ã¢ãã¤ãéå å¯æãè±é¥å ãããå Cãåã ã¨ãã¦ã次ã®æ¡ä»¶ãæºããã¨ããããåï¼thin categoryï¼ã¨ããã¾ãã ä»»æã®å¯¾è±¡A, Bã«å¯¾ãã¦ããã ã»ããC(A, B) ã空éåãåå éåã Cããããåã®ã¨ããé¢ä¿ A ⦠B ã次ã®ããã«å®ç¾©ãã¾ãã A ⦠B â C(A, B) ã空ã§ã¯ãªã Cã¯ããã¦ããã®ã§ãã空ã§ã¯ãªããã¯ãåå éåã§ãããã§ãåãã§ãã次ã®ãã¨ã¯ããã«ãããã¾ãã ä»»æã®å¯¾è±¡Aã«ã¤ãã¦ãA ⦠A ä»»æã®å¯¾è±¡A, B, Cã«ã¤ãã¦ãA ⦠B ã㤠B ⦠C ãª
ãã®è¨äºã¯æ¤è¨¼å¯è½ãªåèæç®ãåºå ¸ãå ¨ã示ããã¦ããªãããä¸ååã§ãã åºå ¸ã追å ãã¦è¨äºã®ä¿¡é ¼æ§åä¸ã«ãååãã ãããï¼ãã®ãã³ãã¬ã¼ãã®ä½¿ãæ¹ï¼ åºå ¸æ¤ç´¢?: "第ä¸ç´é¢æ°" â ãã¥ã¼ã¹Â · æ¸ç±Â · ã¹ã«ã©ã¼Â · CiNii · J-STAGE · NDL · dlib.jp · ã¸ã£ãã³ãµã¼ã · TWL (2023å¹´11æ) è¨ç®æ©ç§å¦ã«ããã¦ã第ä¸ç´é¢æ°ï¼ã ããã£ãã ããããããè±: first-class functionããã¡ã¼ã¹ãã¯ã©ã¹ãã¡ã³ã¯ã·ã§ã³ï¼[1]ã¨ã¯ãé¢æ°ã第ä¸ç´ãªãã¸ã§ã¯ãã¨ãã¦æ±ããã¨ã®ã§ããããã°ã©ãã³ã°è¨èªã®æ§è³ªãã¾ãã¯ãã®ãããªé¢æ°ã®ãã¨ã§ããããã®å ´åãã®é¢æ°ã¯ãåã®ããè¨èªã§ã¯ function typeï¼en:Function typeï¼ãªã©ã¨å¼ã°ããåãæã¡ãã¾ããã®å¤ã¯é¢æ°ãªãã¸ã§ã¯ããªã©ã«ãªããå ·ä½çã«ã¯ããã°ã©ã ã®å®è¡æã«çæãããã
åè«ã«ããã¦ãåããã«ã«ãéï¼ãã«ã«ãã¸ããè±èª: cartesian closedï¼ã§ããã¨ã¯ã大éæã«è¨ãã°ä»»æã®äºã¤ã®å¯¾è±¡ã®ç´ç©ä¸ã§å®ç¾©ãããå°ãç´ç©å åã®ä¸æ¹ã§å®ç¾©ãããå°ã¨èªç¶ã«åä¸è¦ã§ãããã¨ã§ããããã«ã«ãéãªåã¯ã©ã ãè¨ç®ã®èªç¶ãªè¨å®ãã§ããã¨ããç¹ã§æ°çè«çå¦ããã³ããã°ã©ãã³ã°ã®çè«ã«ããã¦ç¹ã«éè¦ã§ããããã«ã«ãéåã®æ¦å¿µã¯ã¢ãã¤ãåã«ä¸è¬åãããï¼ã¢ãã¤ãéåãåç §ï¼ã å C ããã«ã«ãéã§ããã¨ã¯ã以ä¸ã®ä¸æ¡ä»¶ C ã¯çµå¯¾è±¡ãæã¤ã C ã®ä»»æã®äºå¯¾è±¡ X, Y ã«å¯¾ããC ã¯ãããã®ç´ç© X à Y ã対象ã«æã¤ã C ã®ä»»æã®äºå¯¾è±¡ Y, Z ã«å¯¾ããC ã¯ãããã®åªå¯¾è±¡ ZY ã対象ã«æã¤ã ãå ¨ã¦æºãããããã¨ããããä¸ãµãã¤ã®æ¡ä»¶ã¯ãçµã¿åããã¦ãC ã®å¯¾è±¡ãããªãä»»æã®æéæï¼ç©ºã§ãæ§ããªãï¼ã«å¯¾ãããããã®ç´ç©å¯¾è±¡ã C ã«åå¨ãããã¨ããä¸ã¤ã®æ¡
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}