EMã¢ã«ã´ãªãºã ã«ã¤ãã¦ãã£ãã解説 å®å ¨ãã¼ã¿ã®å¯¾æ°å°¤åº¦ãæ大åãªãç°¡åã«ã§ãã ã¨ããä»®å®ãéµããã®ããã¡ã«ãã¾ããã¨æã£ã¦ãããçè«çãªèæ¯ã¯PRML 9.4ãåç §Read less
EMã¢ã«ã´ãªãºã ã«ã¤ãã¦ãã£ãã解説 å®å ¨ãã¼ã¿ã®å¯¾æ°å°¤åº¦ãæ大åãªãç°¡åã«ã§ãã ã¨ããä»®å®ãéµããã®ããã¡ã«ãã¾ããã¨æã£ã¦ãããçè«çãªèæ¯ã¯PRML 9.4ãåç §Read less
åé¡è¨å® Rè¨èªã®æ¸ç±ãRã«ããã¢ã³ãã«ã«ãæ³å ¥éã ã®EMã¢ã«ã´ãªãºã ã«é¢é£ãããç·´ç¿åé¡5.14ããpthonã®ç·´ç¿ãã¦ãEMã¢ã«ã´ãªãºã æ§ç¯ã¾ã§ã®æ°å¼ãã¡ã¢ããªãã解ãã¦ã¿ãã¨ããã話ãåé¡è¨å®ã¨ãã¦ã¯ ã¨ããæ··ååå¸(åå¸ãã確çãåå¸ãã確çã§ãµã³ããªã³ã°)ããåãµã³ããªã³ã°ããç¶æ³ãèãã¦ããã®ãã©ã¡ã¼ã¿ã¼ãEMã¢ã«ã´ãªãºã ã§æ¨å®ããã¨ãããã®ãæ©æ¢°å¦ç¿ã®åéã§ããæã®ãæ師ãªãï¼ã¯ã©ã¹åé¡ãã«è©²å½ããï¼ãã¶ãï¼ã ã°ã©ãã使ã£ã¦ããã¡ãã£ã¨ã¡ããã¨èª¬æãã¦ããã¨ãå®éã«è¦³å¯ãããéãæ£ã°ã©ãã§ç¤ºããã¦ãããã¼ã¿ã¯èµ¤è²ã®ã°ã©ãã§ç¤ºããã¦ããããã®ãµã³ãã«ãªã®ããããã¨ãç·è²ã®ã°ã©ãã§ç¤ºããã¦ããããã®ãµã³ãã«ãªã®ããèå¥ããããã®é¾å¤çãªéã«ãªã£ã¦ããã¨ãããã©ã¡ã¼ã¿ã¼ãæ¨å®ãã¦ã¾ãããã¨ãããã¦ãæ¢åã®ãã¼ã¿ã¯ã®ã©ã¡ãã®åå¸ããæ¥ãå¯è½æ§ãé«ãã®ããå¤æãã¾ãããã¨ããããå
æ£è¦åã¬ã¦ã¹é¢æ°ãããã¯ã¼ã¯(Normalized Gaussian Networks)ã¯æ£è¦åå¸ã«ããç·å½¢å帰ã¦ããããçµã¿åããã¦éç·å½¢å帰ãããã¢ãã«ã ãè«æã«ãã£ã¦ã¯ã»ã¨ãã©åãã¢ãã«ã確ççãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¨å¼ã°ãã¦ãããã¨ãããã修士ã®ã¨ãã«ãã®è«æ(On-line EM Algorithm for the Normalized Gaussian Network http://www.mitpressjournals.org/doi/abs/10.1162/089976600300015853)ã®ã¢ã«ã´ãªãºã ãå®è£ ããããã¨ãããããã®ããã°ã©ã ãåã³ä½¿ãæ©ä¼ããã£ãã®ã§ãã¤ãã§ã«ASDFã§ããã±ã¼ã¸åãã¦githubã«å ¬éãã¦ã¿ããSBCL 1.0.34 (FreeBSD 8.0 Release/amd64)ã§åä½ç¢ºèªãã¦ããã http://github.com/ma
ãªã³ã©ã¤ã³EMã¢ã«ã´ãªãºã ã®è«æãèªãã ãã¨ãããçµæ§åã«èªãã§ããã®ã ããä½ãã¨å¿ããã¦è¨äºã«ããã®ãå¿ãã¦ãããããããç§ã®é ãããæ¶ãããã£ã¦ããã®ã§å¿ããªããã¡ã«ã¡ã¢ã Online EM for Unsupervised Models ãªã³ã©ã¤ã³EM(OnlineEM)ã¯EMã¢ã«ã´ãªãºã ã®ãªã³ã©ã¤ã³çããªã³ã©ã¤ã³ã¢ã«ã´ãªãºã ã¨ã¯ãã¼ã¿å ¨ä½ãã¡ã¢ãªã«ä¹ããã«ããã¼ã¿ãä¸ä»¶ãã¤ä½¿ã£ã¦ãã©ã¡ã¼ã¿ãé 次æ´æ°ãã¦ããæ¹æ³ããªã®ã§ä¸è¬ã«ãªã³ã©ã¤ã³ã¢ã«ã´ãªãºã ã§ã¯ã¡ã¢ãªå¹çãè¯ããªãã ããããªã³ã©ã¤ã³EMã®å ´åã¯ç¶æ³ãç°ãªããEMã¢ã«ã´ãªãºã ã§ã¯ãã©ã¡ã¼ã¿æ¨å®ã®éã«ååçµ±è¨éã¨ãã°ããå¤ãä¿æãã¦ããã°ããããããããã¼ã¿å ¨ä½ãä¿æããå¿ è¦ããªãã ã§ã¯ä½ãå¬ããã®ããã¨ããã¨ãªã³ã©ã¤ã³EMã¯é常ã®EMã«æ¯ã¹ã¦åæãæ©ãã¨ããç¹ããã è«æã®å®é¨çµæãã¿ãã¨ã精度ã§ã¯æ¬æ¥ã®EMã«ã¯åã°ãªãã¿ã
Rubyã«ãã1次ã®ã¬ã¦ã¹åå¸(æ£è¦åå¸)ã®ã¡ã½ãã â å¼æ°ã¯ãå¤xãå¹³åmuãåæ£sigmaãè¿ãå¤ã¯ç¢ºçå¯åº¦ã include Math def gauss(x,mu,sigma) res1=1/Math.sqrt(2*Math::PI*sigma.to_f) res2=(x.to_f-mu.to_f)*(x.to_f-mu.to_f) res3=Math.exp(-res2.to_f/2*sigma.to_f) res1.to_f*res3.to_f end â 1次ã®ã¬ã¦ã¹åå¸ã«å¾ãä¹±æ°ã®ä½æ â ããã¯ã¹=ãã¥ã©ã¼æ³ãç¨ãã¦ãã¬ã¦ã¹åå¸ã«å¾ãä¹±æ°ãçºçãããã å¼æ°ã¯ãçºçãããç·æ°nãã¬ã¦ã¹åå¸ã®å¹³åmuãã¬ã¦ã¹åå¸ã®åæ£sigmaã è¿ãå¤ã¯ãªãã include Math def gauss_rand(n,mu,sigma) j=0 while j < n a=rand(
PRML 9 ç« ã®æ··åã¬ã¦ã¹åå¸ã® EM ã¢ã«ã´ãªãºã ãåå¼·ã®ããã«å®è£ ãã¦ã¿ããï¼ããæ¬æ ¼çãªå®è£ ã¨æ¤è¨¼ã¯ id:n_shuyo ããã®EM ã¢ã«ã´ãªãºã å®è£ (åå¼·ç¨) - Mi manca qualche giovedi`?ãåç §ã®ãã¨ï¼ã ä»ååãã¦ã® R ã ã£ãã®ã§è²ã è¦å´ããããRã¯è¯ãåºæ¥ã¦ãã¦ã¨ã¦ãæå¿ããã çã®åå¸ãå®ç¾©ããã®ã¡ä¼æ¿ãµã³ããªã³ã°ã§ãã¼ã¿ãçæããEã¹ããããMã¹ããããåãã¦åæãããã # ãã¼ã¿çæ xx <- ancestralSampling(1000) # ãã¼ã¿ãæãã¦ã¿ã plot(xx); # K=2 D=2 ã®æ··åã¬ã¦ã¹åå¸ãçã®åå¸ã¨ãã¦å®ç¾©ã start_pi <- list(rnorm(1, 0.5), rnorm(1, 0.5)); start_mu <- list(c(rnorm(1, 10), rnorm(1, 10)), c
æçµå¤æ´è : æ¡åé ä¸, æçµå¤æ´ãªãã¸ã§ã³: 467, æçµå¤æ´æ¥æ: 2009-06-23 14:23:34 +0900 (ç«, 23 6æ 2009) EMï¼Expectation-Maximizationï¼ã¢ã«ã´ãªãºã ã¯ï¼æ··åæ°ãæå®ãããæ··åã¬ã¦ã¹åå¸ã«åºã¥ãï¼å¤å¤éã®ç¢ºçå¯åº¦é¢æ°ã®ãã©ã¡ã¼ã¿ãæ¨å®ããï¼ ç¹å¾´ãã¯ãã«{x1, x2,...,xN} ã®éåãèããï¼ d次å ã¦ã¼ã¯ãªãã空éã®Nåã®ãã¯ãã«ã¯ï¼æ··åã¬ã¦ã¹åå¸ãç¨ãã¦ä»¥ä¸ã®ããã«è¡¨ç¾ãããï¼ ããã§mã¯æ··åæ°ï¼pk ã¯ï¼å¹³åakï¼å ±åæ£è¡åSkï¼ k-thåå¸ã®éã¿Ïkãæã¤æ£è¦åå¸å¯åº¦ã§ããï¼ æ··åæ°mã¨ãµã³ãã«{xi, i=1..N}ãä¸ãããã¨ã§ï¼ã¢ã«ã´ãªãºã ã¯ãã¹ã¦ã®æ··ååå¸ãã©ã¡ã¼ã¿ ï¼ããªãã¡ï¼ akï¼Skï¼Ïkï¼ ã®æå°¤æ¨å®å¤ï¼MLEï¼ ã以ä¸ã®ããã«æ¨å®ããï¼ EMã¢ã«ã´ãªãºã ã¯ç¹°ãè¿ãå¦çãè¡ãï¼å
第1ç« å¦ç¿ã¨ç¢ºç 1.1 å¦ç¿ã¨ã¯ 1.2 確çå¤æ°ã¨æ å ±ç§å¦ 1.2.1 é¢æ£å¤ãã¨ã確çå¤æ° 1.2.2 é£ç¶å¤ãã¨ã確çå¤æ° 1.2.3 確çå¤æ°ã®å¤æ 1.2.4 å¹³åã¨åæ£
ãã®é ã®åé¡ç¹ æ¦è¦ EMã¢ã«ã´ãªãºã ã«ãããã©ã¡ã¼ã¿æ¨å® ãã®é ã®åé¡ç¹ ã¾ã æ¸ãããã æ¦è¦ EMã¢ã«ã´ãªãºã ã«ãããã©ã¡ã¼ã¿æ¨å® EMã¢ã«ã´ãªãºã ã®ã¯ä»¥ä¸ã®å½¢ã ã¯categorical distributionã«ããããã¨ãã¾ãã ï¼categorical distributionã¯Bernoulli distributionã®æ¡å¼µã§ããï¼ ã¤ã¾ãã¨è¡¨ãããæºããã¾ãã Lagrange multiplierãç¨ãã¦æ大åãè¡ãæ´æ°å¼ãæ±ãã¾ãã ãç´æ¥æ±ãã¦ãããã§ãããåç´ã«ã¨ãªãããã«æ£è¦åããã°ããã§ãã ãå¤æ¬¡å æ£è¦åå¸(multivariate normal distribution)ã®å ´åãèãã¾ãã ã¤ã¾ãGaussian mixtureã®æã§ãã ã¯ãã¯ãã«ã§è¡¨ç¾ããã¨ã¯ãããããå¹³åãã¯ãã«ã¨å ±åæ£è¡åã§ãã å¹³åã¨å ±åæ£ãããããã«ã¤ãã¦æ´æ°å¼ãæ±ãã¾ãã å¾®
EMã¢ã«ã´ãªãºã ï¼ä¸å®å ¨ãã¼ã¿ã«å¯¾ãã尤度ã大ãããªãããã«ãã©ã¡ã¼ã¿ã決å®ããä¸è¬çãªæ çµã¿ ä¸å®å ¨ãã¼ã¿ã«ããã観測ãããªãå¤æ°âé ãå¤æ°(latent variable)ã¨å¼ã¶ ã¯ã©ã¹ã¿ãªã³ã°ã«ããã¦ãã¯ã©ã¹ã¿ã«å¯¾å¿ãã確çå¤æ°ãé ãå¤æ°ã¨èãããã¨ãå¤ãã EMã¢ã«ã´ãªãºã å ¥åï¼ä¸å®å ¨ãã¼ã¿D θã®åæå¤ã¯ç¡ä½çºã«æ±ºãã untilåæ Eã¹ãããï¼ä»»æã®ãä»»æã®cã«ã¤ãã¦ããè¨ç® Mã¹ãããï¼ end until ãã ããï¼å°¤åº¦ã«åºã¥ãï¼Qé¢æ°ã®å®ç¾© â»æ大äºå¾ç¢ºçæ¨å®(MAPæ¨å®)ãå©ç¨ããå ´åã®Qé¢æ°ã®å®ç¾©(äºå確ç ãèæ ®)
ããã¾ã§å¾é æ³ã§æé©è§£ãæ±ãã¦ãã¾ããããä»åã¯EMã¢ã«ã´ãªãºã ã使ã£ã¦è§£ãæ±ãã¦ããã¾ãã EMã¢ã«ã´ãªãºã ã¨ã¯ãEï¼Expectationï¼ã¹ãããã¨Mï¼Maximizationï¼ã¹ããããç¹°ãè¿ãã¦ããã解ãæ±ããã¢ã«ã´ãªãºã ã§ãã ä»åã¯ãã¬ã¦ã¹æ··ååå¸ãã§ãã¨ãã¼ã¿ã¨ãã¦ãã©ã¡ã¼ã¿ãæ¨å®ãã¾ãã ã¾ããã¼ã¿ã¨ãã¦ã ã®æ£è¦åå¸ã«ã®ã£ã¨ã£ããã¼ã¿ãçæãã¾ãããã®æãã¨ãã¾ããã ãã®æã®æ··åã¬ã¦ã¹åå¸ã¯ ã¨ãªãã¾ãã ä»åæ±ãããã®ã¯ãã§ãããã ãã ã¨ããæ¡ä»¶ä»ãã§ãã åºæ¬çãªæµã㯠ï¼ï¼å¹³åã»åæ£ï¼ä»åã¯ï¼ã«è¨å®ãã¦çç¥ï¼ã»æ··åä¿æ°ãé©å½ã«è¨å® ï¼ï¼ç¾å¨ã®ãã©ã¡ã¼ã¿ããäºå¾ç¢ºçè¨ç® ï¼äºå¾ç¢ºçã¯ãã¼ã¿æ°Ãæ··åä¿æ°ã®æ°(ãã©ã¡ã¼ã¿ã®æ°ï¼)ã ãçºçããã ï¼ï¼äºå¾ç¢ºçãç¨ãã¦ãã©ã¡ã¼ã¿æ´æ° ï¼ï¼å¯¾æ°å°¤åº¦ãè¨ç®ããå¤åãå°ãããªãã°çµäºã対æ°å°¤åº¦ã¯ ã¨ãªãã¾ãã æ¬å½ã¯äºå¾ç¢ºçã®
ã½ãã®ããã°èªåç¨ã®åå¿é²ããã°ã§ããæ¸ãã¦ããå 容ãã¨ãã«ã½ã¼ã¹ã¯ãå¾ã§èªåã§è¦ç¹ãåãããããããªãç°¡ç¥åãã¦ã¾ãï¼ã¨ããããããå æ¸ï¼ããã¾ãä¿¡ç¨ããªãããã«ï¼æ± L é¢ ï¼é¢ã®æ°ã L åï¼ ã®ãµã¤ã³ãããããåç®ã®åºã確çã ã§ããã¨ãã¾ããããã«Â ã¯ãlçªç®ã®ç®ã®åºã確çã§ãã ãã®ãµã¤ã³ãã M åæ¯ã£ãæãåç®ã®åºãåæ°ã ï¼ i çªç®ã®ç®ãåºãåæ°ã x_i ï¼ã§ãã確çã¯å¤é åå¸ ã§æ±ãããã¾ãã ãæä¸ã®æããã©ã¡ã¼ã¿ ã®æå°¤æ¨å®å¤ã¯ããã¡ãã®PDFã®ããã«ã㦠ã¨æ±ãããã¾ãã 次ã«ãã® L é¢ãµã¤ã³ãã K åç¨æãã¾ããk çªç®ã®ãµã¤ã³ããé¸ã°ãã確çã ã¨ããã°ãåç®ã®åºãåæ°ã ã§ãã確çã¯ãæ··åå¤é åå¸ ã«å¾ãã¾ãã ãã㧠ã§ãããã¯kçªç®ã® L é¢ãµã¤ã³ãã®åç®ã®åºã確çã§ã ã¯ãã® k çªç®ã®ãµã¤ã³ãã® l çªç®ã®ç®ã®åºã確çã§ãã ä»ãK åã®ãµ
確çã¢ãã«ã観測ã§ããªãå¤æ°ï¼æ½å¨å¤æ°/é ãå¤æ°ï¼ã«ä¾åããå ´åã«æå°¤æ³ãå®æ½ããããã®ã¢ã«ã´ãªãºã ãé常ã«å¤ãã®å¿ç¨ã«ä½¿ããå¤åãã¤ãºæ³ãªã©ã®åºç¤ãæãã®ã§ã¨ã£ã¦ã大äºãªã¢ã«ã´ãªãºã ã ãã®ã¢ã«ã´ãªãºã ã§ã¯ãç¾å¨ã®ãã©ã¡ã¼ã¿ï¼)ã¨è¦³æ¸¬å¤æ°()ããå¾ãããæ å ±ã使ã£ã¦ãæ½å¨å¤æ°()ã®æ¡ä»¶ä»ã確çï¼ï¼ãæ±ããã¹ãããï¼E-Stepï¼ã¨ã観測å¤æ°ã®äºå¾ç¢ºçã®æå¾ å¤ãæ大åãããã§ã¼ãºï¼M-Stepï¼ã®äºæ®µéã®å¦çãç¹°ãè¿ããªãããã©ã¡ã¼ã¿ãæé©åããã ã¤ã¾ãã尤度é¢æ°()ã®æ大åãä¸çºã§è¨ç®ãããã¨ãããªã®ã ããããã¯é£ããã®ã§ãä»ã®ã使ã£ã¦è¨ç®ããããå©ç¨ãã¦ã尤度é¢æ°ã®æå¾ å¤()ã®æ大åã¨ããåé¡ã«ç½®ãæãã¦ãããå®éã«ã¯ãæå¾ã®å¼ã2ã¤ç®ã®ãæ§æããåå¤æ°ã«ã¤ãã¦åå¾®åãã¦0ã«ãªãå¤ãæ¢ããªã©ãè¡ã£ã¦æ´æ°ãããã¨ã«ãªãã
èªåã®å®è£ ãããNumpyã§æ··åã¬ã¦ã¹åå¸ã®EMã¢ã«ã´ãªãºã ãå®è£ ãããã®ã³ã¼ããä¸è°·ããã®ãEM ã¢ã«ã´ãªãºã å®è£ (åå¼·ç¨) - Mi manca qualche giovedi`?ãã¨ç §ãããããã¦çãåãããã¦ã¿ãã ã¾ããEMã¢ã«ã´ãªãºã ã£ã¦ãªããªã®ãã£ã¦è©±ãç°¡æ½ã«ã観測ã§ãã¦ãã確çå¤æ°Xã®ä»ã«è¦³æ¸¬ã§ãã¦ãªã確çå¤æ°Zãããç¶æ³ãããã表ç¾ããããã«èªåã§ä½ã確çã¢ãã«ãä»®å®ããããã®ç¢ºçã¢ãã«ã®ãã©ã¡ã¼ã¿Î¸ãã観測ããããã¼ã¿Xããèãã¦ãã£ã¨ãè¯ãããªãã®ãé¸ã³ãããã³ã¬ãç®çãæ°å¼ã§è¨ãã°p(X|θ)ãæ大ã«ããθãæ±ãããã ä½ãæ®å¿µãªãã¨ã«p(X | θ)ã®å¼ã¯ç°¡åã«ã¯æ大åã§ããªã(ã§ãããªãEMã¢ã«ã´ãªãºã 使ããªãã¦ãã)ã¨ãããããã¦å¹¸éãªãã¨ã«å®å ¨ãã¼ã¿ã®å¯¾æ°å°¤åº¦ ln p(X, Z | θ)ã®æ大åã¯ç°¡åã ã¨ä»®å®ãããPRMLã®ä¸å·»p.166ãããã®è°è«ã¨ææ©
æè¿å¿ããã¦*1ãPRML ã®äºç¿ãæ»ãä¸ã ãããã次㮠PRML èªæ¸ä¼ã«å¾æ空æ³ã§è¡ã£ãããæ°æã¡ããæ天ãã¦ãã¾ããããªã®ã§ããªãã¨ãé å¼µã£ã¦èªãã§ã¿ãã EM ã¢ã«ã´ãªãºã ã¯ä½ã¨ãªããããããå¤åãã¤ãºãããããâ¦â¦ ã¨ããããã§ãOld Faithful ã®æ··åæ£è¦åå¸ã§ã®æ¨è«ã K-means 㨠EM ã¨å¤åãã¤ãºã«ã¤ãã¦ãï¼²ã§å®è£ ãã¦ã¿ãã K-means Old Faithful + K-means ã«ã¤ãã¦ã¯ããã§ã« ååã®è¨äºã§ã試ãæ¸ã¿ã ãã®è¨äºã§ã¯ãã¤ãã¬ã¼ã·ã§ã³ãï¼è¡ã§æ¸ãã¦ãã¿ã£ã½ããã¦ãã¾ã£ã¦ãã®ã§ãããããããæ´çããã®ã以ä¸ã®ã³ã¼ãã è·é¢ãåãã¨ããã¯å°ãå¤ãã¦çããã¦ããã # Old Faithful dataset ãåå¾ãã¦æ£è¦å data("faithful"); xx <- scale(faithful, apply(faithful,
2010-12-27 ã©ã°ã©ã³ã¸ã§ã®æ¹ç¨å¼2010-12-24 éèã¨ç©ç2010-12-18 ç·å½¢ç©ºé2010-12-16 ã«ã«ãã³ãã£ã«ã¿å ¥é ã«ã«ãã³ãã£ã«ã¿2010-12-15 ç·å½¢å·®åæ¹ç¨å¼ æå°åæ£ãã¼ããã©ãªãª2010-12-10 ç¶æ 空éã¢ãã«2010-12-09 ãªã¤ã©ã¼ã®æ¹ç¨å¼2010-12-08 ææ°å¹³æ»ç§»åå¹³å2010-12-03 æé©ãã¼ããã©ãªãª2010-12-01 ã¨ã³ãããã¼ å ±åæ£è¡å2010-11-24 FrontPage2010-11-13 æå°äºä¹æ³2010-11-01 éç·å½¢ç¶æ 空éã¢ãã«ã®ç²åãã£ã«ã¿2010-10-30 ã¬ã¸ã¼ã ã¹ã£ããã³ã°ã¢ãã«2010-10-29 EMã¢ã«ã´ãªãºã 2010-10-28 ç²åãã£ã«ã¿ã«ãã追跡ã¢ã«ã´ãªãºã é ããã«ã³ãã¢ãã« EMã¢ã«ã´ãªãºã ã¨ã¯ 確çã¢ãã«ã®ãã©ã¡ã¼ã¿ãæå°¤æ³ã«åºã¥ãã¦æ¨å®ããææ³ã®ã²ã¨ã¤ã§
ãã®é ã¯æªå®æã§ããé大ãªééããå«ãã§ããå¯è½æ§ãããã¾ãã æ°å¦çãªå³å¯ãã¯ããã¾ãããå¼å¤å½¢ã®éä¸ã§ç¢ºçåå¸ã確çå¯åº¦é¢æ°ããã¡ãã¨å®ç¾©ããã¦ããã®ãçãããã§ããã¾ãå ¨ä½çã«èª¬æä¸è¶³ã§ãã EMã¢ã«ã´ãªãºã ï¼The EM algorithm, [Dempster et al. 1977]ï¼ã¯ä¸å®å ¨ãã¼ã¿ã«å¯¾ãã¦æå°¤æ¨å®ãè¡ãã¡ã¿ã¢ã«ã´ãªãºã ã§ããExpectation-stepã¨Maximization-stepã®äºã¤ã®ã¹ããããç¹°ãè¿ããã¨ã«ããã確çãã©ã¡ã¼ã¿ãæ´æ°ãã¦ããã¾ãã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}