Leafmap offers a wide range of features and capabilities that empower geospatial data scientists, researchers, and developers to unlock the potential of their data. Some of the key features include: Creating an interactive map with just one line of code: Leafmap makes it easy to create an interactive map by providing a simple API that allows you to load and visualize geospatial datasets with minim
Home Home Book Installation Get Started Usage Web App Tutorials Contributing FAQ Changelog YouTube Channel Report Issues API Reference Workshops Notebooks Welcome to leafmap¶ A Python package for geospatial analysis and interactive mapping in a Jupyter environment. GitHub repo: https://github.com/opengeos/leafmap Documentation: https://leafmap.org PyPI: https://pypi.org/project/leafmap Conda-forge
ã¦ãã¯ãã®æ ªä¾¡äºæ¸¬ å ¬éãã¼ã¿ãã2012å¹´ãã2016å¹´ã¾ã§ã®ã¦ãã¯ãã®æ ªå¼æ å ±ã«é¢ãããã¼ã¿ã»ãããç¨ãã¦ç°¡åãªæ ªä¾¡äºæ¸¬ããã¾ãã æ ªä¾¡äºæ¸¬ãããã«ããã£ã¦ããç¾å½¹ã·ãªã³ã³ãã¬ã¼ã¨ã³ã¸ãã¢ãæããPython 3 å ¥é + å¿ç¨ +ã¢ã¡ãªã«ã®ã·ãªã³ã³ãã¬ã¼æµã³ã¼ãã¹ã¿ã¤ã«ããåèã«ããã¦ããã ãã¾ããã 1. ãã¼ã¿ã»ããã®åãè¾¼ã¿ å¿ è¦ãªã©ã¤ãã©ãªãã¤ã³ãã¼ããã¾ãã %matplotlib inline import datetime import numpy as np import matplotlib.pyplot as plt import pandas as pd import sklearn import sklearn.linear_model import sklearn.model_selection ãã¦ã³ãã¼ããããã¼ã¿ã»ããã®ä¸èº«ã¯ä»¥ä¸ã®ãããªç¶æ ã§ããã¼ã¿
ä»åã¯pythonãç¨ãã¦æ¥çµå¹³åæ ªä¾¡ã®æ¨ç§»ãäºæ¸¬ãã¦ã¿ããã¨æãã¾ããã³ã¼ãã®è©³ãã解説ãªã©ã¯åèã«ããã¦ããã ããè¨äºã«ããã¾ãã®ã§ãã¡ããã覧ãã ããã ãã®è¨äºã§ã¯å®è£ ããéã«èºããç¹ããã¡ãã£ã¨ãã工夫ã解説ãã¾ãã ãµã³ãã«ã³ã¼ã import numpy as np import pandas as pd import matplotlib.pyplot as plt import sys from fbprophet import Prophet from fbprophet.diagnostics import cross_validation from fbprophet.diagnostics import performance_metrics from fbprophet.plot import plot_cross_validation_metric data
Prophetã¯ãFacebookãéçºããæç³»åäºæ¸¬ã©ã¤ãã©ãªã§ãããã®äºæ¸¬ææ³ã¯ãæç³»åãã¼ã¿y(t)ããã¬ã³ã(t)+å£ç¯æ§(t)+ã¤ãã³ã(t)+誤差(t)ã®åæã¨ãã¦åæãã¦äºæ¸¬ã¢ãã«ãæ§ç¯ãã¾ããã¤ã¾ãããããããã¤ãã¼ãã©ã¡ã¼ã¿ã¨ãã¦äºæ¸¬ã¢ãã«ã調æ´ã§ãã¾ããããããã¥ã¼ã©ã«ãããã¯ã¼ã¯ï¼RNNï¼ã¨æ¯è¼ãã¦æ±ãæãã¨ããã§ããè«æã¯æ¬¡ã®ãªã³ã¯å ã®READ THE PAPERããé£ã¶ãã¨ãåºæ¥ã¾ããhttps://facebook.github.io/prophet/ ã¤ã³ã¹ãã¼ã«ã¯ãAnacondaç°å¢ä¸ã§æ¬¡ã®ããã«condaã§åºæ¥ã¾ãã conda install -c conda-forge fbprophet æ¬è¨äºã§ã¯ãæ¥çµå¹³åæ ªä¾¡225ã®2017å¹´12æãã2020å¹´12æã¾ã§ã®3å¹´éã®ãã¼ã¿ãå ã«ãä¸å³ã®ããã«2021å¹´3æã¾ã§ã®æ ªä¾¡ãäºæ¸¬ããéå½¢ã³ã¼ããè¼ãã¾ã
æ¤ç´¢é度ãå¾ãããã«ã証å¸ã³ã¼ã(scode)ã¨æ¥ä»(tday)ã«ã¤ã³ãã£ã¯ã¹ãå¼µãã æ ªä¾¡ãã¼ã¿ã¯ãä¾ãã°ä¸è¨ã®ãµã¤ããããã¦ã³ãã¼ãããã http://souba-data.com/ ãã¦ã³ãã¼ãããæ ªä¾¡ã®ZIPãã¡ã¤ã«ã解åãã¦ãCSVãã¡ã¤ã«ã®ä¸ãã証å¸ã³ã¼ããçµå¤ãèªè¾¼ãã§SQLiteã«ä¿åãããµã³ãã«ã³ã¼ããè¨è¼ããã def data_dl(): conn = sqlite3.connect("chart.db"); c = conn.cursor() d = datetime.datetime.today(); for i in range(0,365): d = datetime.datetime.today() - datetime.timedelta(days=i); zip_path = "data\\T%s.zip" % (d.strftime("%y%m%d"
ã¤ã³ããæ å ±ä¿æ°ï¼Information Coefficientï¼ã決å®ä¿æ°ãåèã¨ãã¦æå·è³ç£ãã¬ã¼ãã®æè³ææ¨ã®é¸èãè¡ã£ã¦ããè¨äºãæ£è¦ããã¾ãï¼ä¸»ã«noteã§ã®èè ã®çãã¾ï¼ãåãããã«ãã¦Jupyter Notebookã使ç¨ããæ£å¸å³ã®æç»ãããã®çµæããæè³ææ¨ãé¸æãã¦ã¿ã¾ããã試é¨çã«ãã®æè³ææ¨ãæå·è³ç£ã®ãã¬ã¼ãã«é©ç¨ãã¦ã¿ãçµæãèå¯ãã¾ãï¼æ¦ãæ¢ç¥ã®å 容ã§ãã IC ãè¨ç®ãã¦ããJupyter Notebookã¯ãã®ã¾ã¾æµç¨ã§ãã¾ãï¼ã ã¾ãbitbank.cc APIããå¾ãããå足ã®OHLCVãã¼ã¿ãã1åå¾ã®ãªã¿ã¼ã³ã«å¯¾ããæè³ææ¨ã®ç¸é¢ãè¨ç®ãã¦ãæ å ±ä¿æ°ï¼Information Coefficientï¼ 0.382 ãå¾ã¾ããï¼æè³ææ¨ã«ã¤ãã¦ã¯å¾è¿°ï¼ãæ å ±ä¿æ°ã«ã¤ãã¦ã¯ãã·ã¹ãã¬ã®ã¹ã¹ã¡ 3.5.æè³ææ¨ã®æ¢ç´¢è¦é ãããã¡ãã®è¨äºã§è§£èª¬ããã¦ãã¾ãã
æè¿ã§ã¯æ©æ¢°å¦ç¿ãåãå ¥ãããµã¼ãã¹éçºãå¢ãå§ããç§èªèº«ããã®ãã£ã¬ã¯ã·ã§ã³ããããã¨ãããã¾ãã ãã ããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããMLã¨ã³ã¸ãã¢ã¨å¼ã°ãã人ã ãä½ãå¦ç¿ã¢ãã«ãç²ç®çã«å©ç¨ããã ãã®ç°¡åãªãä»äºã§ããã¨ããã®ã¯å¦ãããåå¿è ï¼ç§ï¼ããæ©æ¢°å¦ç¿ã®ç¥èã¬ãã«ãä¸ããããã«ãç°¡åãªå¦ç¿ã¢ãã«ãä½ããããã«ãªãã¾ã§ã®éç¨ãã¾ã¨ãã¦ã¿ã¾ããã â» ç¶ç·¨ãæ©æ¢°å¦ç¿ã®åå¿è ãpythonã§æ馬è¨å¿µãäºæ³ãã¦ã¿ãããæ¸ããã®ã§ãä½µãã¦ã覧ãã ããã ä»åã®ã´ã¼ã« pythonã«ããç°å¢æ§ç¯ããã¹ã¿ã¼ããã¦ãä¸çªæã£åãæ©ãã¨æããããã¸ã¹ãã£ãã¯å帰ã«ããåé¡ã¢ãã«ãæ§ç¯ãã¦ã¿ãã¨ããã¾ã§å®æ½ãã¦ã¿ã¾ããé¡æã¯è¶£å³ã¨å®çãå ¼ãã¦ã競馬äºæ¸¬ã¢ãã«ã«ææ¦ãã¦ã¿ã¾ãã â»ãªãã競馬ã®å°éç¨èªã使ç¨ãã¦ã¾ãããä¸æãªç¹ã¯èª¿ã¹ã¦é ããã°ã¨æãã¾ãã ç°å¢æ§ç¯ åæ å®æ½ããç°å¢ã¯ä»¥ä¸ã®éãã§ãã
ã¯ããã« ã¿ãªãã競馬ã¯ã好ãã§ããããï¼ ç§ã¯ä»å¹´ããå§ããåå¿è ãªã®ã§ãããæ§ã ãªæ å ±ãããéãã¦äºæ³ãã¦å½ã¦ãã®ã¯æ¬å½ã«æ¥½ããã§ããï¼ æåã¯äºæ³ããã ãã§æ¥½ããã£ãã®ã§ããããè² ããããªããã¨ãã欲ã溢ãåºã¦ãã¦ãã¾ãã¾ããã ããã§ããªããåã¦ãç¾å³ããæ¹æ³ã¯ãªãããªãã¨ããããµã¼ãã£ã³ãã¦ããã¨ãããæ©æ¢°å¦ç¿ãç¨ãã競馬äºæ³ã¨ããã®ãé¢ç½ããã ã£ãã®ã§ãåå¼·ãã¦ãææ¦ãã¦ã¿ããã¨ã«ãã¾ããã ç®æ¨ 競馬ã®éå çã¯70~80%ç¨åº¦ãããã®ã§ãé©å½ã«è²·ã£ã¦ããã°ååçããã®ã¸ãã«åæãããã§ãã ãªã®ã§ã¨ãããããåºèµ°åã«å¾ããããã¼ã¿ã使ã£ã¦ãååç100ãã¼ã»ã³ã以ä¸ãç®æãããã¨æãã¾ãï¼ è¨å®ã決ãã ä¸æ¦ã«ç«¶é¦¬äºæ¸¬ããã¨ãã£ã¦ããåç´ã«é ä½ãäºæ¸¬ããã®ããã¯ãã¾ããªããºãèãã¦è³ãæ¹ãæé©åããã®ããªã©è²ã ã¨ããã¨æãã¾ããã¾ããè²·ã馬å¸ããããããªç¨®é¡ãããã¾ãã ä»å
Yves HilpischãPythonã«ãããã¡ã¤ãã³ã¹ 第2çããã¼ã¿é§ååã¢ããã¼ãã«åãã¦ãï¼é»å·å©æ訳ãä¸å¦»ç §éæè¡ç£ä¿®ããªã©ã¤ãªã¼ã¸ã£ãã³ï¼ãå»å¹´ã®æ«ã«çºå£²ãããã®ã§ãå æ¥ããç´ä¸é±éããã¦èªã¿ã¾ããããã®ãã¨æ¾ç½®ãã¦ããã®ã§ãããä»åãã®å 容ãç« ãã¨ã«è¦ç´ããã®ã§åèã«ãã¦ãã ããã Pythonã«ãããã¡ã¤ãã³ã¹ 第2ç âãã¼ã¿é§ååã¢ããã¼ãã«åã㦠(ãªã©ã¤ãªã¼ã»ã¸ã£ãã³) ä½è :Yves Hilpisch çºå£²æ¥: 2019/12/26 ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼ ä½è ã®Yves Hilpischï¼ã¤ã¼ãã»ãã«ãã·ã¥ï¼æ°ã¯ãæè³éè¡ã®ã¯ãªã³ãã¨ãã¦Pythonãç¨ããããã±ã¼ã¸ã®éçºã§éèæ¥çã«è²¢ç®ãã¦ããæ¹ã§ãç¾å¨ã¯The Python Quants GmbHããã³The AI Machineã®CEOãåãã¦ãã¾ããæ¬æ¸ã§ãå¾åã¯å½¼ã®æã«ããä¾¡æ ¼ä»ãã©ã¤ã
ABEJA Advent Calendarã®10æ¥ç®ã§ãã ã¯ããã«ã®ã¯ãã㫠以ä¸ã¯ãããã¾ã§ãã¹ããã¼ã¿ã§ä¸æãè¡ã£ã¦ããã¨ãã話ã§ãæ¬å½ã«ããããã£ããå²ãããã¨ããã¨ãã¾ã ã¾ã ãããã¾ããã®ã§ãããããï¼ãã¨ãã¿ããã¿ã ãã«ãä»åã®ã¯ããã¾ã§å人ã®ãã£ã¦ã¿ãè¨é²ã§ãããçµç¹ã®åãçµã¿ã¨ã¯é¢ä¿ããã¾ããã ã¯ããã« ãéã欲ããï¼ç¡éã«å¯¿å¸ãé£ãããï¼æ ªã§å²ãããï¼ ç 究ãã¨ã³ã¸ãã¢ãªã³ã°ãããªããçãã¦ãä¸ã§ãå°æ¥ã®ãã£ãªã¢ãæè¡ã¹ã¿ãã¯ã«ã¤ãã¦æ¥ã èãã¦ããã§ãããããããåç¹ã«ç«ã¡è¿ãã¨ããããæè¡ã¹ã¿ãã¯ã¨ãã©ãã§ãããã¦ã好ããªãã®ãä½ã£ã¦æ¼«ç»èªãã§çãã¦ãããããã§ããã¤ã¾ãçµå±ãä¸ã®ä¸ã¯éãªãã§ãããéããªã®ã§ãä½ã¨ããã¦å¯ã¦ã¦ãå§åçã«å²ããä»çµã¿ãä½ãããï¼ãããªæ°æã¡ã§ç§å©ç§æ¬²ã®ããã«æ©æ¢°å¦ç¿ã使ã£ãã¨ããè¨é²ã§ãã 以ä¸ã¯ãä»åç´¹ä»ããæ¹æ³ã§å®é¨ãããã¹ããã¼ã¿
ã©ããã馬ãäºæ¸¬ããã¦ããã®ã ãã ã©ããã馬ãè²·ã£ã¦100%ãè¶ ããã®ã ãã?ã¡ã¤ã³ã¬ã¼ã¹ããæ¡ä»¶æ¦ã®æ¹ãçã£ã¦ããã®ããª? 競馬ãã¡ã³ãªãæ°ã«ãªãã¾ãããã ã¨ãããæ¤è¨¼ç¨ãã¼ã¿ã®DataFrameã«ã¯é¦¬åãå ¥ã£ã¦ãããã馬çªã人æ°ãªã©ãåå¦çå å·¥ãããå¤ã°ãããå ¥ã£ã¦ããããªããºãrawãã¼ã¿ã§ã¯ãªãã£ãããã¨ã¦ããããã«ããã£ãã§ããå¥éãã¼ã¿ãä½æããªããã°ã調ã¹ããã¨ãã§ãã¾ããã§ãã. ãã£ã¼ãã©ã¼ãã³ã°ããä»ã®ã¢ãã«ã«å¤æ´ãã¦ã¿ã ããã¯åãå¤æ´ããã³ã¼ãã§ãã ã·ã³ãã«ãªãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¨æ¯è¼ãã¦ãããã£ã¨ã·ã³ãã«ãªãã¸ã¹ãã£ãã¯å帰ã«å¤æ´ãã¦ã¿ã¾ãã from sklearn.linear_model import LogisticRegression model = LogisticRegression(C=2.0, penalty='l1', random_s
pohotos by Ronnie Macdonald **ãAIã人éã®ä»äºã奪ããã¨è¨ããå§ãã¦ãã°ããçµã¡ã¾ãããä»ããå¹»æ» æã«å ¥ã£ãã**ãªãã¦è¨ããæ¹ããã¦ãã¾ãããããã§åã¯ä»äºã奪ããããã¨ããªããæ¯æ¥æºå¡é»è»ã«æºããã¦ãã¾ãã奪ã奪ãè©æ¬ºãããã¨ãã§ãã ãããªAIã®çºå±ã«ã¯ããå°ãæéãããããããªä¸æ¹ã§ãå¦ã¹ãç°å¢ã¯ç°¡åã«æã«å ¥ãããã«ãªãã¾ããã触ããªããçãå¹»æ» ãããã£ã¦ããä»ãªæ°ããã¾ããã¨ãããã¨ã§ãä»æ´ã§ããAIã®åãç¥ãã¹ãããã£ã¼ãã©ã¼ãã³ã°ã«è§¦ãã¦ã¿ããã¨ã«ãã¾ããã ãããã試ããã®ã§ãããããã§ã¯çµæãã¡ã¤ã³ã«**ãç¡ç¥ã®ç¶æ ããåå¼·ãã¦ãããã£ã¼ãã©ã¼ãã³ã°ã§ãããããã¯æ¥½ããããã**ã¨ãããã¨ãä¼ãã¦ã¿ã¾ããããã°ã©ã ã¯ãææ¬ã«ãªããããªãã®ã§ã¯ãªãã®ã§ãè¦ãã人ã ãã«ææã§å ¬éãã¦ã¿ã¾ãã Kaggleã§ãã£ã¼ãã©ã¼ãã³ã°ã®ãæ並ã¿æè¦ æå
ãã¼ã¿ã«åºã¥ãå ææ¨è«ãã©ã®ããã«è¡ãããã®ãã詳ãã説æãã¦ããã¾ããå æã®å®ç¾©ãå ææ¨è«ã«å¿ è¦ãªæ¡ä»¶ãRCTã®æ義ãªã©ããããã¾ã¨ãã¦ããããä¾ã®ãã¨ããããããªã¥ã¼ã ã«ãªã£ã¦ãã¾ãã¾ããããªããæ¬è¨äºã§ä½¿ãããç¨èªã¯ããç«å¦ãã®å ææ¨è«ã§ä½¿ããã¦ãããã®ãåºæ¬ã§ããåãã³ã³ã»ããã§ãåéã«ãã£ã¦å¼ã³æ¹ãéãã®ã§ããã®ç¹ã¯ãäºæ¿ãã ããã ã¾ãã¯ãå æå¹æãã®å®ç¾©ãã ãã¼ã¿ããå æå¹æãæ±ããããã®åææ¡ä»¶ åæâ ï¼(Mean) Exchangeability å®ç¾© 交絡ã¨ã®é¢ä¿æ§ ã©ã³ãã åã¨ããéæ³ è¦³å¯ãã¼ã¿ã§ã®å ææ¨è«ãå¯è½ã«ããConditional Exchangeability åæâ¡ï¼Consistency åæâ¢ï¼Positivity åææ¡ä»¶ã®ãã¨ããã¼ã¿ããå¹³åå æå¹æãå°ã Exchangeabilityãæç«ãã¦ããã¨ãï¼ä¾ï¼ã©ã³ãã åæ¯è¼è©¦é¨ï¼ Condi
æ©æ¢°å¦ç¿ãªã©ä¸»ã«äºæ¸¬ãç®çã¨ããçµ±è¨ææ³ã«å¼·ãã¤ã¡ã¼ã¸ã®Pythonã§ããããçµ±è¨çå ææ¨è«ãè¡ãããã®ã©ã¤ãã©ãªãâDoWhyâãã¤ãã«ãªãªã¼ã¹ããã¾ããã DoWhy | Making causal inference easy â DoWhy | Making Causal Inference Easy documentation ããã¾ã§å ææ¨è«ããã¾ã浸éãã¦ããªãã£ã*1ãã¼ã¿ãµã¤ã¨ã³ã¹çã«æ°ãã風ãå¹ãã®ã§ã¯ã¨æå¾ ãé«ã¾ãã¾ãã ä¸æ¹ã§ãã®ããã±ã¼ã¸ãä½ãå¯è½ã«ããéã«ä½ãã§ããªãã®ããç解ããªããã°ãéãªãã¼ã¿åæãå¢ãã¦éã«æ害ãªã®ã§ã¯ã¨æããä»åããã°ãæ¸ããã¨ã«ãã¾ããã å ã«è¨ã£ã¦ããã¨ãç§èªèº«ã¯Pythonãã¡ã¤ã³ã«ä½¿ã£ã¦ããããã§ã¯ããã¾ããï¼ä½¿ã£ããã¨ã¯ããã®ã§ä¸å¿ã³ã¼ããèªãã§ä½ãèµ·ãã£ã¦ããããããã¯ãããã¾ãï¼ããããã£ã¦æ¬è¨äºã®ç®çã¯ãDoWhyã©ã¤ã
主張ï¼é«éåã¯æå¾ã®ããã®ãã¿ã«ãã¾ãããã ç¡é§ã«ãããããã¦é«éåããã¦æºè¶³ããçµå±ãã®å¾ã¯ã»ã¨ãã©ä½¿ããªãã£ããªãããããç§ã®æ¥å¸¸ã§ãã ããã人ãè¨ã£ã¦ãã¾ãããé«éåãªãã¦ãã³ãæå¾ã§ãããã§ãã»ã»ã»ã ä»ã¾ã§ä½ååå¾æãããã¨ããããï¼ãããããã¾ãããã¾ãããï¼ pythonã§ããã° numba,cython,swig ãªã©ãã³ã³ãã¤ã«ãã¡ããç³»ã®åï¼ãã¯ã¼ï¼ãåãããã¨ã§ã å ¨ãåãã¢ã«ã´ãªãºã ã§ããã£ãã100ååä½ã§ç°¡åã«é«éåã§ãã¾ãã ãããããã®ããæ¹ã§ã¯pythonã®ã¤ã³ã¿ã¼ããªã¿ã¼ãªãããµãâ³è¨èªã®è¯ããï¼è©²å½ã³ã¼ãé¨åã«ããã¦ï¼æ¨ã¦ã¦ãã¾ãã¾ããçµå±C/C++ã«éã売ã£ã¦ããã ãã§ãã ç§ã¯éã売ããã¨ããèªä½ã好ããªã®ã§è¯ãã§ããããã®è¡çºã¯pythonã®æã¤å¥ã®é¢ã§ã®é«éæ§ãã¤ã¾ã "çç£æ§ã®é«ã" ãç ç²ã«ãã¦ãã¾ãã ã³ã¼ãã®å®è¡ã¹ãã¼ããéããªã£ã¦
趣å³ã§ã¢ã«ã´ãªãºã åå¼ã®ã·ã¹ãã ãéçºã»éç¨ãã¦ã¿ããã¨ã§å¾ãããç¥è¦ã«ã¤ãã¦ã社å ã®ãã¼ãèªç±ãªåå¼·ä¼ã§çºè¡¨ãã¾ãããRead less
2020/02/01 è¿½è¨ [ã³ã¼ãä»ã]誰ãç¥ããªãé¢é£éæããæ©æ¢°å¦ç¿ã使ã£ã¦ç´ æ©ãè¦ã¤ãã ãã¡ãã«ææ°ã®çµæãè¼ãã¾ããï¼ æ°ã¥ãããã§ããã©ãç§ã¿ãããªè²§ä¹äººã¯ã·ã§ããã³ã°ã¢ã¼ã«ã§ãããããªã´ãããã£ãã¨è²·ãæ¼ããã§ããããéæã¡ã®äººã£ã¦æ ªãè²·ãããããã§ãããã èãã¦ã¿ãã°è²§ä¹äººã欲ããããã®ã£ã¦ãç¾åã®ã¡ãã£ã¨ãããã®ãã家ãè»ããã¤ã¯ãã²ã¼ã æ©ãªã©ãè²·ã£ãããéãæ¸ããã®ã°ãããªãã§ãã ããã«æ¯ã¹ã¦ããéæã¡ãè²·ããã®ã£ã¦ãæ ªãæè³ç¨ã®åå°ãããªã¹ã¯ãããããã®ã®è²§ä¹äººã欲ããããªãããã«è²·ã£ãããéãå¢ããå¯è½æ§ã®ãããã®ã°ãããªãã§ãããã¼ã ããã¯æããï¼ä¼æ¥ã«ãªããã³ã«ãã£ãã¨ã·ã§ããã³ã°ã¢ã¼ã«ã«ãéãéãã§ã´ããè²·ãæ¼ã£ã¦ãèªåãè¦ã¦ãéæã¡ã¯ãã£ã¨ç¬ã£ã¦ããã«éããªãï¼ãããéæã¡ã«ã¯èªåã®ãããªäººéã¯è¦çã«ããå ¥ããªãã®ããããã¯ãã£ããæ ªãè²·ããªãã¨ï¼ã¨
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}