ä¿æ±é¦å¤«ãç¥ã®ç©çå¦ãï¼æµ·é³´ç¤¾ã2017ï¼
æ¬æ¸ã¯è¦åçç©ãé»æãã®ç¬¬2ç« ãçè«ç©çå¦è
ã®ç«å ´ã§æ¸æãããã¨ãä¼å³ãã¦æ¸ããã¦ãããããã«ãæ¾äºå®ç·ç»ä¼¯ã®è²´éãªçµµãã«ã©ã¼ã§åãã¦ããã
ç´ é åçè«(Elementary Domain Theory)ã¯æ¹¯å·ç§æ¨¹å士ãæ©å¹´ã«æå±ããç©çå¦ã®çè«ã ããã®å¾ãèè
ãå«ã湯å·é人ãã¡ãæ°å¦è
ã»å²¡æ½ãæµåå®å
ææ´¾å§ä¾¶ã»å±±æ¬ç©ºå¤ãã¨ã®è°è«ãçè«åãã¸ã¦ç¾å¨ã«è³ããç¹ã«ãèè
ã»ä¿æ±é¦å¤«ã1981å¹´ã«çºè¡¨ããä¿æ±æ¹ç¨å¼(ä¸)ãç´ é åçè«ã«æ°å¼ãä¸ãããã®ã¨ãã¦éè¦ã§ãã (Kunio Yasue, 'Stochastic calculus of variations', Journal of Functional Analysis, vol. 41, issue 3, May 1981)ã
Â
ããã§ãL 㯠Lagrangian, Dx 㯠平ååæ¹é度ãD*x 㯠平åå¾æ¹é度ããã®æ¹ç¨å¼ããã¯ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼(1926å¹´)ãå°ããã¨ãã§ããç»æçãªãã®ã§ããã
ï¼
æ¬æ¸ã¯ç·å¯ãªæä½ã§ç´ é åçè«ã«ã¤ãã¦è¨è¿°ããå·»æ«ã«ã¯ä¿æ±ãèªèº«ã®çè«çæ çµã®å½¢æã«ããã¦æ大ã®æè¬ãããããä¸è¾¼ç
§æã®å¯å¿è«ç©çå¦ã®æ½è±¡ççè«ãã¢ããè«çãããã¯æ
å ±æ©æ¢°çä¸çã¢ãã«ã¨éååå¦(æ°ççèå¯)ããä»é²ã¨ãã¦åãããã¦ãããå
¨ä½ã§190é ã«æºããªãæ¸ç©ã§ããããå¯åº¦ã¯æ¿ãã
1 å®å
¨èª¿åã®ç空ãããã¯ç¥
æ¬æ¸ã§ã¯ãåºç¤çè«ç©çå¦ã«ããã¦ãç空ãã解æãã¦ããã¨ãã«ããããç¥(ãã¿)ãã¨å¼ã³ãã¾ãç空ã示ãæ§ã
ãªæ§è³ªã®ããã¤ãããç¥æãããæããããã¯ãæ
ç·ããªã©ã¨è¡¨ããã¨ãã¦ããã
ãã®ãç空ãã¯ã空(ãã)ãã®ãã¨ã§ããããç¦
å®ã»é»æªå®ç·æ¬å±±ã®é迦åã®é ä¸ã«æ²ããããæ¸ã®ãç空ããæ¡ã£ããã®ã§ãããæ¬æ¸ã§ã¯ãåå¨ãããã®ã¯å®å
¨ãªèª¿åã®ã¿ã¨ããç¶æ³ãèãããããã空(ãã)ãã¨å¼ã¼ããã¨ã¾ãè¿°ã¹ãã
ãããã®ç¨èªã¯ãå¾æ¥ãããã«ãªã«ãåå¨ãã¦ããªããç¡(ã)ãã¨åä¸è¦ããã¦ããå®å
¨èª¿åã®ç空ãåºç¤çè«ç©çå¦ã®èå¯å¯¾è±¡ã¨ããã«ããããåºå¥ããããã«ãã¡ãããã¦ãããã¤ã¾ããæ¬æ¸ã«ããã¦ãç空ã¯ç¡ã§ã¯ãªãã
ãç©çå¦ãé¢ãå½¢èä¸å¦ã«åå
¥ãããªãã°ãå®å
¨èª¿åã®ã¿ã®ç空ã®ç¶æ³ã¯ã¾ãã«ç¥ã®ä¸çããããã¯ç¥ã®ãã®ãã®ã¨ãã£ã¦ããããã¨ã®èãããããç¥ãã®èªã使ããã¦ããã
è°è«ãå
èµ°ãããã§ããããç©çå¦ã®è«æã§ãç¥ãã®èªã¯ä½¿ããªããããå¾æ¥ã¯å¥ã®è¨èã«ç½®æãããã¦ãããä¾ãã°ããæ½è±¡çèªæã(æ°å¦è
ãã©ã³ã»ãã¤ãã³)ããç¥ã®è¦ãç©´ã(ç©çå¦è
ã»æ°å¦è
ã¢ã¤ã¶ã¯ã»ãã¥ã¼ãã³)ãªã©ã
ãæãã¨ãæ
ç·ãã®èªã¯ãæ°å¦è
ã»å²¡æ½ã®ã空éã¨ããã®ãããæãã®å
æºçã§ãããããããããã«çãã人éã¯ãæ
ç·ããæã大åã«ããªããã°ãªããªããã¨ããèãã«åºã¥ãã
湯å·ç§æ¨¹ã¯ãæ°å¦è
ãªãã°ãã許ããã岡æ½ã®ãæããçè«ç©çå¦è
ã®è¨èã§ãããç´ é åãã«ç½®ãæããã空éããç¡æ°ã®ãç´ é åãã«ãã£ã¦æ§æããã¦ããã¨ãããç´ é åçè«ããæå±ãããã¨ããã
ï¼
ãã®ããã«ãç´ é åçè«ã¯çè«ç©çå¦ã ãã§ãªããæ°å¦ãå½¢èä¸å¦ãªã©ã®ãã¾ãã¾ãªé åããã¢ããã¼ããããã¨ãå¯è½ã§ãããèè
ã«ã¯æ°å¼ãã¾ã£ãã使ããã«ç´ é åçè«ã説æããæ¸ç©ãããããæ¬æ¸ã§ã¯çè«ç©çå¦ã®ç«å ´ããã¹ãã¬ã¼ãã«æ±ã£ã¦ããã
ãç¥ã®ç©çå¦ãã®ãããªè¡¨ç¾ã«æµæãæããå ´åã¯ãåã«ãç空ã®ç©çå¦ãã¨è§£ãã¦ããã ããã°ããã¨ãèè
ã¯ãã¨ãã£ã¦ããã
2 å®å
¨èª¿åã®èªçºçç ´ãã¨ãã¦ã®ç´ é åã¨ç´ ç²å
2ç¯ã§ãã¾ã æ°å¼ã¯åºã¦ããªããããããé常ã«ã¹ãªãªã³ã°ã§ãç´ é åã¨ç´ ç²åã®é¢ä¿ã«ã¤ãã¦ãåãã¦æ確ãªåãããããããã
2ç¯ã®ä¸»é¡ãå®å
¨èª¿åã®èªçºçç ´ãã¨ãã¦ã®ç´ é åã¨ç´ ç²åãã«ã¤ãã¦ãæ°å¦çããã³å½¢èä¸å¦çãªã¢ããã¼ãããªããããçè«ç©çå¦ã§ã¯ãµã¤ãã¯æ°å¦çã¢ããã¼ãã©ã¾ãã§ããããå½¢èä¸å¦çãªã¢ããã¼ããå ãã¦ããã®ãæ¬æ¸ã®å¤§ããªç¹å¾´ã§ãããåé¨é½ä¸éå士ã®å¯¾ç§°æ§ã®èªçºçç ´ã (spontaneous breaking) ãç¨ããããã
ï¼
ç空ã«åå¨ããå®å
¨èª¿åãä¸é¨ã§èªçºçã«ç ´ããå ´åãæ³å®ããããã®èªçºçç ´ãã¯æ°å¦çã«ã¯1次å
ã2次å
ã3次å
ã4次å
ã5次å
ãçã
ã極è«ããã°ç¡é次å
ã®åå¨ã¨èããããã
ãè¤æ°ã®èªçºçç ´ããåæã«çºçããäºè±¡ã¯ç¢ºçè«ã®ãã¯ã½ã³åå¸ã«å¾ããã®ã§ããã®å ´åã¯ã3åã¨ãªããã¨ãæã確ãããããã¤ã¾ãããç空ã®ä¸ã«çããå®å
¨èª¿åã®èªçºçç ´ãã®å¤§å¤æ°ã¯æ³¡ã®ãã¨ã3次å
ã®ç«ä½é åã®å½¢ãåãããã¨ã«ãªãããã®åã
ããç´ é åãã¨å¼ã¶ãæ¬æ¸ã§ã¯èå¯å¯¾è±¡ã®3次å
ç´ é åãåã«ç´ é åã¨ãã¦ããã
ããããã¦ç空ã®ä¸ã«çããèªçºçç ´ãã¨ãã¦ã®ç´ é åã®å
¨ä½ããå®å®ç©ºéããããã¯ã空éãã¨å¼ã¶ãå³ã¡ãã空éãã®æ§æè¦ç´ ããç´ é åãã«ä»ãªããªããã
ï¼
ãã¨ãã¨ç空ã¯å®å
¨èª¿åã®ã¿ãåå¨ãã¦ãããããã®ããä¸é¨ã«å®å
¨èª¿åã®èªçºçç ´ããçããã¨ãã«ã¯ãã®ç ´ããå®å
¨èª¿åãéããã«å¾©æ§ãããããªæµãããçã¾ãããããã®æ§è³ªããåé¨ã»ã´ã¼ã«ãã¹ãã¼ã³ã®å®çãã¨å¼ã³ããã®æµãããã´ã¼ã«ãã¹ãã¼ã³ç²åã(Goldstone boson) ã¨å¼ã¶ã
å½¢èä¸å¦çç´ é åçè«ã«ããã¦ã¯ããã®ã´ã¼ã«ãã¹ãã¼ã³ç²åãã復å
ã¨ãã«ã®ã¼ãã¨å¼ã¶ã
ï¼
ããããããããããã¨ããã§ããããã復å
ã¨ãã«ã®ã¼ã¯èªçºçç ´ããçãã¦ããé¨åã§ããç´ é åã«ããåå¨ã§ããªããããã ãããç空ã®ä¸ã«å®å
¨èª¿åã®èªçºçç ´ãã¨ãã¦ç´ é åãå¤æ°çºçãã¦ããå ´åã«ã¯ãä¸ã¤ã®ç´ é åããä»ã®ç´ é åã¸ã¨è»¢ç§»ããããã¨ãèããããã
ãã®ãç´ é åããç´ é åã¸ã¨è·³ã³ç§»ã£ã¦ãã復å
ã¨ãã«ã®ã¼ããç´ é åçè«ã«ããã¦ã¯ç©è³ªã®æå°æ§æåä½ã§ãããç´ ç²åãã ã¨èãããã®ã§ããã
åãã¦ãããèããæã¯è奮ãæããããªãã£ãã®ãè¦ãã¦ãããç´ ç²åã«ã¯ãããã°ã¹ç²åãé»åãã¯ã©ã¼ã¯ãå
åããã¥ã¼ããªããã°ã«ã¼ãªã³ãªã©ã®åºå¥ãããã
2ç¯ã®çµããã«æ¾äºå®ç·ç»ä¼¯ã®çµµãUniverse (3)ã(京é½ã»å¤§åä¸åé¢æèµ) ã2é ã«ããã£ã¦åãããã¦ãããã¾ãã«ç´ é åãè¦è¦åããã¨ãã®ããã«ãªãã®ã§ã¯ã¨æããããããªçµµã ã
ã婦人ç»å ±ãã®Â 大åä¸åé¢æ¢è¨ªè¨äºÂ ã«åç»ä¼¯ã®ã両çæ¼è¼ç¾
ãã®åçããã£ã (ä¸)ãç¾ç©ãè¦ã¦ããªãã®ã§ä½ã¨ããããªããããã®å±é¢¨çµµã®ä¸ååãæ¬æ¸ã«åãããããUniverse (3)ãã«ããä¼¼ã¦ããã
ï¼
ï¼ç¯ä»¥éã¯æ°å¼ããµãã ãã«åºã¦ãããããã«ç°¡åã«æ¸ã表ãã®ãé£ããæ°å¼ã®å ´åã¯ãµããããªããã以ä¸ãç°¡åã«ç´¹ä»ããã
3 éååå¦ã¨å ´ã®éåè«
ç´ ç²åãä»ã®ç´ é åã«è»¢ç§»ããå ´åã«ãéåç¶æ
ãã«ããã¨ãããããããè¨è¿°ããã®ã«äºç¨®é¡ã®ææ³ãããã
第ä¸ã®ææ³ã¯ãä¸ã¤ã®ç´ ç²åã«çç®ãã¦ã©ã®ç´ é åã«é 次転移ãã¦ãããã追ããå°é¢¨ã®ä¼´èµ°è¦³æ¸¬ã«ä¼¼ã¦ãããnçªãã®è»¢ç§»å
ã®ç´ é åã ξn ã¨ãã¦ã転移å
ã®ç´ é åã®ç³»å
X={ξ0, ξ1, ξ2, ξ3, ..., ξn, ...}
ã§è¡¨ããã (æ°åã¯ä¸ä»ãæå subscript[以ä¸åæ§ï¼½)ããç´ ç²åã®éåããã®éåçµè·¯ã«çç®ãã¦è¨è¿°ããçè«çæ çµã¿ã¯ãéååå¦ãã¨å¼ã°ãããã
ï¼
第äºã®ææ³ã¯ãããããã®ç´ é åã«çç®ãã¦ããã§ã®ç´ ç²åã®åå¨ã®æç¡ãé 次è¨è¿°ãã¦ãããå°é¢¨ã®å®ç¹è¦³æ¸¬ã«ä¼¼ã¦ãããç空ã®ä¸ã«çãã3次å
ã®ç´ é åã®å
¨ä½ãéå
Î={Î0, Î1, Î2, Î3, ..., În, ...}
ã¨è¨è¿°ããããã®ã¨ãåç´ é å În(n=0, 1, 2, 3, ...) ã«åå¨ããç´ ç²åã®æ°ã N(În) ã¨ããã°ãç´ ç²åã®éåç¶æ
ã¯æ°å
N={N(Î0), N(Î1), N(Î2), N(Î3), ...}
ã®å¤åã追ãã°ããããç´ ç²åã®å½¢æ
ãè¤æ°ããå ´åã«ã¯ãå½¢æ
Aã®ç´ ç²åã«æ·»ãå a ãå°å
¥ãã¦ãå½¢æ
A ãã¨ã«ãã®ç´ ç²åã®éåç¶æ
ãæ°å
Na={Na(Î0), Na(Î1), Na(Î2), Na(Î3), ...}
ã®å¤åã¨ãã¦æãããããããããç´ ç²åAã®éåæé¢ã¨å¼ã¶ãããç´ ç²åã®éåããã®éåæé¢ã®å¤åã¨ãã¦è¨è¿°ããçè«çæ çµã¿ã¯ãå ´ã®éåè«ãã¨å¼ã°ãããã
ãç´ ç²åã®æ°ãå¤åãããç¡æ°ã®ç´ ç²åã®éåã解æããå ´åã«ã¯ãéååå¦ãã§ã¯ãªããå ´ã®éåè«ããç¨ãããã¨ã«ãªãããã¤ã¾ããé«ã¨ãã«ã®ã¼ç¾è±¡ã«ã¯ãå ´ã®éåè«ã(quantum field theory) ãåãã¦ãããç´ ç²åãå¤åãããæ°ã種é¡ãå°ãªãå ´åã«ããããéååå¦ã(quantum mechanics) ãæå¹ã§ããã
ï¼
å°é¢¨ã®è¬ãã§ããã¨ãå°é¢¨ãå¤åããããå¤æ°ã®å°é¢¨ã移åãã¦ãããããªå±é¢ã§ã¯ãå ´ã®éåè«ããæå¹ã ã¨ãããã¨ã ã
5 æéã¨å
é度
4ç¯ã®ã¹ã«ã©ã¼å
å (ã¯ããã³) ããµã¾ãã¦ãç´ é åçè«ãããã«æ·±ããããããçè«ã§ããããå¦å®ã«ç¤ºãããã®ã5ç¯ã ãã¹ã«ã©ã¼å
å (ã¯ããã³)ã¯ãè·é¢ãã¨ãæå»ããå®ããã¨ãã®åºæ¬ã«ãªãã
ãããããã®ç´ é åã®å¤å´ã¯å®å
¨èª¿åã§ããããã¨ãã¾ãææãããããã®å¤å´ã«ãæ¥ãã¦åå¨ãããã¹ã¦ã®ç´ é åã¯ãå®å
¨ã«ä¸ã¤ã«åæããããã
4ç¯ã¨5ç¯ã¨ãã¤ã¥ãã¦èªãã¨ãããã®ãå®å®ç©ºéãã«ããã¦ã¯ãå
ããããéãé度ã§ã空éãã®ä¸ã移åãããã¨ã¯ã§ããªãããã¨ããç´ é åçè«ã®ç«å ´ããå®å
¨ã«å¾å¿ããããããããã®äºå®ãåçã¨ãã¦ä»®å®ãããã®ãã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®ãç¸å¯¾æ§çè«ãã«ä»ãªããªããã
ã¤ã¾ããã湯å·ç§æ¨¹å士ã®ç´ é åçè«ã¯ã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®ç¸å¯¾æ§åçã®åºç¤ãä¸ãããããæ·±ãã¬ãã«ã®ç©ççè«ãã§ãããã¨ãæããã«ãªãã
ããã¾ã§ããã¨ããã®ãã¾ãã®ãããã«æéãåããããå¾ãªãã
7 æ°´ç´ ååã®å
é¨éåã¨éååå¦
6ç¯ã®æ°´ç´ ååããµã¾ãã¦ã7ç¯ã¯èè
ãã人é¡ã®éåå¡ãã¨å¼ã¶ãã¨ã«ã´ã£ã³ã»ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼ã®ç 究ã«ãµãããæ°´ç´ ååã®å
é¨éåãåãã¦æ£ç¢ºã«è¨è¿°ããè«æã1926å¹´ã«çºè¡¨ããã®ã ããã®çè«ä½ç³»ã¯ãéååå¦ãã¨å¼ã°ããã
7ç¯ã®45é ãã48é ã«ããã¦ã®ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ããããæ°å¼ã®å±éã¯ãè¦ã人ãè¦ãã°ãçè«ç©çå¦ã®ç²¾è¯ã¨ããããèå¯ã ããã
ï¼
ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ãç·å½¢ã§ãããã¨ããçããåé¡(ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼ã®ç«ãªã©)ãèè
ã¯ããææãããã48é ã«ç·å½¢ã®èª¬æãããã
H(aÏ+bÏ)=aHÏ+bHÏ
ã®ãã¨ããæ³¢åé¢æ°ÏãÏã«å¯¾ããå®æ°åã¨åãä¿åããããã«ä½ç¨ãããã¨ãããç·å½¢ã«ä½ç¨ãããã¨ã§ãã (H: Hamiltonian)ã
ï¼
ãååãååã®å
é¨éåãã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼ãåºæ¬ã¨ãã¦è¨è¿°ãããéååå¦ãã®çè«ãæç«ããèæ¯ã«ã¯ãååãååãæ§æããç´ ç²åã®éåãç´ é åããç´ é åã¸ã¨è»¢ç§»ãã¦ããã¨ãã«ã®ã¼ã«ä»ãªããªãã¨ããç´ é åçè«ã®è¦³ç¹ãããã¨ãããã¨ãå¿ãã¦ã¯ãªããªããã¨èè
ã¯è¨ãã
ãä»ãããã®ã·ã¥ã¬ã¼ãã£ã³ã¬ã¼æ¹ç¨å¼èªèº«ã湯å·ç§æ¨¹å士ããã©ãçãã空éã®å¾®ç´°æ§é ããå°ãåºããããã¨ã示ããã¨ããã§ãç©çå¦ã®å¿ç¨ã«ã¯ãªãã®å©ãã«ããªããªãã®ã¯äºå®ãã¨èè
ã¯è¬éããããããèªä½ãçè«ç©çå¦ä¸ã大å¤ãªææã§ãããã¨ã¯ééããªãã
ããã¦ãåé ã«ç¤ºããä¿æ±æ¹ç¨å¼ã¯æ¬æ¸ã«ã¯åºã¦ããªããè¬éã«ãç¨ãããã
Â
Â
Â
Â
Â