This document discusses using sliding windows to aggregate streaming data in MapReduce. It proposes buffering input tuples in mappers until a window is full, then emitting the aggregate. Combiners and reducers combine partial aggregates across windows. Window ranges are initialized and updated during merging to remove outdated data and handle late arrivals. This approach allows streaming aggregati
å ¬å¼ãªä»æ§ã¯ç¡ããããã½ã¼ã¹ãèªãã®ã¯å³ãããæ´å½¢ããã ãã§ã¯å ¨ç¶èªããªãã£ãã ã¯ããã¼ 4ç¨®é¡ ç¾è¡ãã¼ã¸ã§ã³ã® ga.js ã使ç¨ããã¯ããã¼ã¯ã主ã«4ã¤ã __utma ã¦ã¼ã¶ãèå¥ã2å¹´æå¹ã __utmb ä»åã®ã»ãã·ã§ã³ãèå¥ã30åæå¹ã __utmz ã©ãããæ¥ããããªãã¡ã©ã6ã¶ææå¹ã __utmv ã«ã¹ã¿ã 夿°ã2å¹´æå¹ã __utma, __utmb, __utmz ã¯ãga.js ãå®è¡ãããã¨ãã«ãç¡ãã£ããä½ãããã __utmv ã¯ã_setCustomVar() ã§ä½ãããã æå¹æéã¯ãæå¾ã«æ´æ°ããæç¹ããã«ã¦ã³ãããã4ã¤ã¨ããGAã«ãã¼ã¿ãéãããåº¦ã«æ´æ°ãããã ãã¨ãã° __utma ãªããã¦ã¼ã¶ã2å¹´éãµã¤ãã«æ¥ãªãã£ããæ¶ããã2年以å ã«å度ã¢ã¯ã»ã¹ããã¨ãããããã¾ã2å¹´ã®æå¹æéãä¸ããããã ä»ã«ã __utmc å¤ããã¼ã¸ã§ã³ã§ã
By roboppy ã©ã³ãã¿ã¤ã ã«ã©ãã®ãåºã«è¡ãï¼ã¨ãã話ã«ãªã£ãæãããã¯ããã«ãã«è¡ããããã¨ææ¡ããã¨æºå ´ä¸è´ã§ããã¯ããã«ãã¯ããããããã¨è¿ããã䏿è°ã¨ããããã¢ã¤ãã¢ãåºã¦ãããã¨ããã®ãJon Bellããã®æå±ããããã¯ããã«ãçè«ããBellããã«ããã°ãã®ãã¯ããã«ãçè«ã使ãã¨ãè¡ãè©°ã¾ããã¡ãªãã¸ãã¹ä¼è°ãããã¸ã§ã¯ãã§ããåªããã¢ã¤ãã¢ãåºããã¨ãã§ããããã§ãã McDonaldâs Theory â What I Learned Building⦠â Medium https://medium.com/what-i-learned-building/9216e1c9da7d Bellããã®ãã¯ããã«ãçè«ã¨ã¯ãå®è¡å¯è½ãªã¢ã¤ãã¢ã®ãã¡æä½ã®ãã®ããææ¡ãããã¨ã«ãã£ã¦ããã£ã¹ã«ãã·ã§ã³ãå§ã¾ãã人ã ãæ¥ã«ã¯ãªã¨ã¤ãã£ãã«ãªããã¨ãè¨ãã¾ããææªã®ã¢ã¤ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}