åºç¤ã³ã¼ã¹ã§ã¯ãæ©æ¢°å¦ç¿ã®åºç¤ã¨æ ¸ã¨ãªãã³ã³ã»ããã«ã¤ãã¦èª¬æãã¾ãã ä¸è¨ã®é åºã«æ²¿ã£ã¦æ´æ°ãããã¨ããããããã¾ãã
ãã¼ã ãã㰠人工ç¥è½ï¼ï¼¡ï¼©ï¼ãããã°ãã¼ã¿æ³å MidjourneyãStable Diffusionãmimicãªã©ã®ç»åèªåçæAIã¨èä½æ¨©ï½ç¥â¦ ã¯ããã« MidjourneyãStable Diffusionãmimicãªã©ãã³ã³ãã³ãï¼ç»åï¼èªåçæAIã«é¢ãã話é¡ã§æã¡ããã§ãããããããã®ãµã¼ãã¹ã®å 容ã«ã¤ãã¦ã¯ä»æ´è¨ãã¾ã§ããªãã®ã§ããMidjourneyãStable Diffusionã¯ãæç« ï¼åªæï¼ãå ¥åããã¨AIãèªåã§ç»åãçæãã¦ãããç»åèªåçæAIããmimicã¯ãç¹å®ã®æãæã®ã¤ã©ã¹ããå¦ç¿ããããã¨ã§ãæãæã®åæ§ãåæ ãããã¤ã©ã¹ããèªåçæã§ããAIãä½æã§ãããµã¼ãã¹ãã§ãï¼ãµã¼ãã¹ãªãªã¼ã¹å¾ããç大ã«çä¸ãã¦ãµã¼ãã¹åæ¢ãã¡ããã¾ãããï¼ã ã§ããã®æã®ç»åèªåçæAIã®ãããªã³ã³ãã³ãèªåçæAIã§ãããèä½æ¨©æ³çã«åé¡ã«ãªãè«ç¹ã¯å¤§ä½æ±ºã¾
Stable Diffusion ãæ¥ã¦ããã£ã¦ãã¨ã§è²§è ã® GPU ã§ããã¨ããã® Colaboratory ã§ãããã試ãããã®ã ãã©ãã¼ãããã¯ä¸ã§ Python ã®ã³ã¼ãããã¾ãã¾ããããªãã試è¡é¯èª¤ããã®ã¯å¾®å¦ã«ä½é¨ãæªãã ã¡ãã£ã¨ããã¦ã§ããµã¼ãã¹ã¨ãã¦ç«ã¦ã¦å®è¡ã§ããã¨ããããã©ããªããªãã¯ã©ã¦ããµã¼ãã¹ã帯ã«çã襷ã«é·ãã¨ããæã㧠GPU ãæ°è»½ã«åããããã¨ããã¯ãªãããã â¦â¦ã¨æã£ãããColab ä¸ã« HTTP ãµã¼ããç«ã¦ããããã¨ãç¥ã£ãã®ã§ããã®æ¹æ³ã§ãã£ã¦ã¿ããã¨ã«ããã ãã£ã¦ã¿ãã½ã¼ã¹ã¯ä»¥ä¸ã GitHub - motemen/stablediffusion-server-on-colab README ã«ãããã¼ãããã¯ãéã㦠Huggingface ã®ãã¼ã¯ã³ãåããGPU ãé¸æãã¦å®è¡ããã¨ãµã¼ããèµ·åããããµã¼ããèµ·åããåã®ã»ã«ã«è¡¨ç¤ºãã
ç»åçæAIã®Stable Diffusionããªã¼ãã³ã½ã¼ã¹ã¨ãã¦å ¬éããã¾ãããããã£ããåããã¦ã¿ãããªã¨æã£ã¦è§¦ã£ã¦ã¿ããã¨ã«ãã¾ããããæå ã«ããã®ã¯MacBookã ããªã®ã§ããªããªã大å¤ã§ããã ããããããã¨ã«ãå 人ãããããããã®ã§åèã«ãã¦ç°å¢æ§ç¯ãã§ãã¾ããï¼ ãã¶ããããªãã«ããã«ãããªãåãããããã«ãªãã¨æãã¾ããã©ãä»ãããã£ã¦ã¿ããã¦ãã©ãã£ã¦ã人ã®åèã«ãªãã°ã¨ãããã¨ãªããæ¸ãã§æ縮ã§ããæ¸ãã¦ããã¾ãã åä½é度ã¨ã ã¡ãªã¿ã«æ°ã«ãªãå®è¡é度ã§ãããèªåã使ã£ã¦ããã®ã¯MacBookPro 14ã¤ã³ãã¢ãã«ã®ä¸çªã¹ããã¯ãä½ããã¤ã§ã㦠8ã³ã¢CPUã14ã³ã¢GPUã16ã³ã¢Neural Engineæè¼Apple M1 Pro ã¡ã¢ãª32GB ã§ãã ç»åçæä¸ã¯15ã20GBã»ã©ã¡ã¢ãªãæ¶è²»ãã5åã»ã©ã§ç»åã6æçæã§ãã¾ãã å¦ç¿ã¢ãã«ãåå¾ãã
ãªã³ã¯ ITmedia NEWS ç»åçæAIãStable Diffusionãããªã¼ãã³ã½ã¼ã¹å åç¨å©ç¨ãOK AIã¹ã¿ã¼ãã¢ããä¼æ¥ã®è±Stability AIã¯ãç»åçæAIãStable Diffusionãããªã¼ãã³ã½ã¼ã¹åãããAIæè¡è åãã³ãã¥ããã£ãµã¤ããHuggingFaceãã§ã³ã¼ããããã¥ã¡ã³ããå ¬éããä»ãåAIã試ãããã¢ãµã¤ããªã©ãå ¬éãã¦ããã 154 users 134 ãªã³ã¯ ã¯ã¦ãªå¿åãã¤ã¢ãªã¼ HãªStable Diffusion åæã¨ãã¦ãStableDiffusionã§ã¨ãç»åãåºããã¨ãã¦ãsafetycheckerã¨ããæ©è½ãå ¥ã£ã¦ãããã»ã³ã·ãã£ããªç»åãåºããã¨ããã¨é»å¡ãã«ãªãã(Stable⦠180 users
話é¡ã®StableDiffusionããªã¼ãã³ã½ã¼ã¹ã§8/23ã«å ¬éãããã®ã§ãæå ã®ãã·ã³ã§åããã¾ã§è©¦ãããã¨æãã¾ãð¼ (ä¸è¨ã«è¨è¼ãã¦ãã¾ãããèªåã®ç°å¢ã ã¨VRAMãä¸è¶³ãã¦ããã¨ã©ã¼ãåºã¦ãã¾ã£ãã®ã§ã¤ã¬ã®ã¥ã©ã¼ãªå¯¾å¿ããã¦ãã¾ãð) â» âè¿½è¨ ã³ã¡ã³ãæ¬ã«ã¦ã @kn1chtãããç´¹ä»ãã¦ãã ãã£ã¦ããããã«ããã·ã³ã®VRAMã10GBæªæºã®ç°å¢ã§ã¯å精度ï¼float16ï¼ã®ã¢ãã«ããªã¹ã¹ã¡ããã¦ãã¾ãã æ¬è¨äºã§ã¯ãå¥ã®æé©åããããã®ãç´¹ä»ãã¦ãã¾ããããã¡ãã®å©ç¨ãæ¤è¨ãã¦ã¿ãã¨è¯ãããã§ãð https://zenn.dev/link/comments/7a470dc767d8c8 StableDiffusionãã©ããªãã®ãã¯ã深津ããã®è¨äºãåèã«ãªãã¾ãã 1. ç°å¢ Razer Blade (RTX 2070, VRAM 8GB) CUDA Toolk
æ°äºº: ãæ¬æ¥ãã¼ã¿ãµã¤ã¨ã³ã¹é¨ã«é å±ã«ãªãã¾ãã森æ¬ã§ãï¼ã å 輩: ãããåãæ°äººã®æ£®æ¬ããããåãä¸å¸ã®é¦¬åºã ãããããï¼ã æ°äºº: ããããããé¡ããã¾ãï¼ã å 輩: ããã£ããã ãã©ãç·´ç¿ã¨ãã¦ç°¡åãªã¢ããªãä½ã£ã¦ã¿ãããã å 輩: ã森æ¬ãã㯠Python ãªãæ¸ããããªï¼ã æ°äºº: ãã¯ãï¼å¤§å¦ã®ç 究㧠Python æ¸ãã¦ã¾ããï¼PyTorch ã§ã¢ãã«ä½æãã§ãã¾ãï¼ã å 輩: ãã»ããæµç³ã ãã æ°äºº: ð å 輩: ããããåã«ã¯ä»ãã 3 æéã§æ©æ¢°å¦ç¿ Web ã¢ããªãä½ã£ã¦ããããã å 輩: ãé¡æã¯ããã ãªããåçã«åã£ã¦ãé¡ãçµµæåã§é ãã¢ããªã«ãããã å 輩: ããããããã¤ã¯ä¸è¦ããã¼ã«ã«ã§åãã°ããããããé¡èªèã¨ç»åå¦çã§ãããããï¼ã æ°äºº: ð æ°äºº: (ããããããããã3 æéï¼å³ãããã...) æ°äºº: (ã¾ãã¢ãã«ã©ãããããã¦ããã
èªåã®å£°ãç¾å°å¥³ãã¤ã¹ãã¤ã±ã¡ã³ãã¤ã¹ã«å¤æãã¦ããããã¤ã¹ãã§ã³ã¸ã£ã¼ã¯ãã©ã¤ãé ä¿¡ãã ã¼ãã¼æ稿ã®éã«ãããããåå¨ã§ãããããããã¤ã¹ãã§ã³ã¸ã£ã¼ã«ãã£ã¦å¤æã§ããé³å£°ã¯åºå®ããã¦ãããèªå好ã¿ã®é³å£°ã«å¤æã§ãããã¤ã¹ãã§ã³ã¸ã£ã¼ãè¦ã¤ããã®ã¯å°é£ã§ãã天çæ´²ã¢ã¤ã«æ°ã¯ããã®åé¡ãAIãç¨ãã¦è§£æ±ºããæ¹æ³ã«ã¤ãã¦è§£èª¬ããããã«AIã®åã§èªåã®å£°ã好ã¿ã®å£°ã«ãªã¢ã«ã¿ã¤ã å¤æã§ãããã¤ã¹ãã§ã³ã¸ã£ã¼ãMMVCããå ¬éãã¦ãã¾ãã VRChatãªã©ã®ç»å ´ã«ãã£ã¦èª°ã§ã好ããªã¢ãã¿ã¼ã使ã£ã¦å¥½ããªãã£ã©ã¯ã¿ã¼ã«ãªããããã¨ãå¯è½ã¨ãªãã¾ãããã¾ããèªåã®å£°ãç¾å°å¥³ãã¤ã¹ãã¤ã±ã¡ã³ãã¤ã¹ã«å¤æã§ãããã¤ã¹ãã§ã³ã¸ã£ã¼ãå¤ãã®ç¨®é¡ãåå¨ãã¦ãã¾ããããããæ¢åã®ãã¤ã¹ãã§ã³ã¸ã£ã¼ã«ã¯ãçæ³çãªçµæãå¾ãããã«ã¯ãã¤ã¹ãã§ã³ã¸ã£ã¼ã«åãããçºå£°ç·´ç¿ãå¿ è¦ãããªã¢ã«ã¿ã¤ã å¤æãä¸å¯è½ãªãããä¼è©±ãã©
ããã¯ãFOLIO Advent calendar 2021 ã®15æ¥ç®ã®è¨äºã§ãã åè«ãæ©æ¢°å¦ç¿ã«å¿ç¨ãã話é¡ã®ä¸ã¤ã¨ãã¦Lensã§å¾®åå¯è½ããã°ã©ãã³ã°ãå®è£ ãã話ãç´¹ä»ãããã¨æãã¾ããã¨ã¯ããåè«ãªã©æ°ã«ããLensã使ã£ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãå®è£ ãã¦ããã¾ããå¦ç¿ã¢ãã«ã誤差é¢æ°ãå¦ç¿ä¿æ°ãªã©ã®åºæ¬çãªæ§æè¦ç´ ãå ¨ã¦Lens(ParaLens)ã¨ãã¦å®è£ ã§ããæ§åã楽ããã§ããã ããã°ã¨æã£ã¦ãã¾ãã Lensã£ã¦ä½ï¼ Lensã¯ãããã getter 㨠setter ãçµã¿åããããã¼ã¿æ§é ã§ããããªãã¡åsã®ãã¼ã¿åããåaã®å¤ãåãåºãgetter s -> a ã¨ãåsã®ãã¼ã¿åãåaã®å¤ã§æ´æ°ãã¦æ°ããåsã®ãã¼ã¿åãä½æããsetter (s, a) -> s ããæã£ã¦ãã¾ãã
ããã«ã¡ã¯ã ã¦ã¼ã¶ã¼ãèªç±ã«å ¥åããããã¹ãã«å¯¾ããAIã話ã®å±éãèªåçæãã¦ãããADVãAIãã³ã¸ã§ã³ãã«æè¿ããããªãã¦ããã®ã§ãå¸æãããã¦ãªãã¬ã¤ãå訳ãã¦ã¿ã¾ããã AIãã³ã¸ã§ã³ã¨GPT-3ã«ã¤ãã¦å°ã説æãã¾ããAIãã³ã¸ã§ã³ã¯åºæ¬ç¡æã§ãããã´ã¼ã«ãããã©ã...
We propose a categorical semantics of gradient-based machine learning algorithms in terms of lenses, parametrised maps, and reverse derivative categories. This foundation provides a powerful explanatory and unifying framework: it encompasses a variety of gradient descent algorithms such as ADAM, AdaGrad, and Nesterov momentum, as well as a variety of loss functions such as as MSE and Softmax cross
é»éãã¸ã¿ã«ã§ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããåããåç°ã§ãã æ¬è¨äºã§ã¯ãæ©æ¢°å¦ç¿ã«ããã¦ã¢ãã«å¦ç¿æç¹ã§ã®ãã¼ã¿ã¨æ¨è«æç¹ã§ã®ãã¼ã¿ãçµæçã«ä¹é¢ãèµ·ããã¦ããããããããã¼ã¿ããªããã®æ¤ç¥ãèªååããããã«æ§ç¯ããã¯ã¼ã¯ããã¼ã«ã¤ãã¦ãç´¹ä»ãããã¾ãã ãã¼ã¿ããªããã«ããæ©æ¢°å¦ç¿ã¢ãã«ã®å£åã¨ã¯æ©æ¢°å¦ç¿ã¢ãã«ãå®éç¨ãã¦ããéã«èª²é¡ã«ãªãäºè±¡ã®1ã¤ã¨ãã¦ããã¼ã¿ããªããã®åé¡ãããã¾ãã ä¸è¬çã«ãæ©æ¢°å¦ç¿ã§ã¯ããã¤ãã®ç¹å¾´éXã«å¯¾ããç®çå¤æ°Yã¨ã®é ããé¢ä¿ãå®å¼åãã¾ããXã¨Yã®é¢ä¿ã¯æéãçµã¤ã«ã¤ãã¦å¤åãã¦ãããã¨ããã°ãã°ãããããã«ä¼´ã£ã¦ä¸åº¦ä½æããã¢ãã«ã®æ¨è«ç²¾åº¦ãä½ä¸ãã¦ããã¾ãã ç°¡åãªä¾ã¨ãã¦ãããWebãµã¼ãã¹ã«ããã¦ãµã¤ãä¸ã®è¡åãã°ãå ã«ã¦ã¼ã¶ã¼ãã¨ã«ã³ã³ãã¼ã¸ã§ã³ã®çºçãäºæ¸¬ããæ©æ¢°å¦ç¿ã¢ãã«ãä½æããã¨ãã¾ãããã®ã¢ãã«ã¯ããå¹³åçã«10å以ä¸é²è¦§ãã¦ããã¦ã¼
ãã®è¨äºã¯ CAMPHOR-ã¢ããã³ãã«ã¬ã³ãã¼2020 6æ¥ç®ã®è¨äºã§ãã ã¿ãªããããã«ã¡ã¯ãã»ãªãã§ãã ç§ã¯ä»å¹´åº¦ãã大å¦ã§èªç¶è¨èªå¦çã®ç 究ã«åãçµãã§ãã¦ããã¼ã¿ã»ãããä½ã£ã¦ãã¥ã¼ã©ã«è¨èªã¢ãã«ããã¬ã¼ãã³ã°ãã¦è©ä¾¡ããæ©ä¼ãããããããã¾ããã æè¿ã¯PyTorch, TensorFlow, scikit-learnãªã©æ§ã ãªæ©æ¢°å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ã«ãã£ã¦ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¢ãã«ã®å®è£ ãç°¡åã«è¡ããããã«ãªã£ã¦ãã¾ãã ä»åã¯ããããã£ããã¬ã¼ã ã¯ã¼ã¯ã§æ©æ¢°å¦ç¿ãããã¨ãã«ä¾¿å©ãªãµã¼ãã¹ãCometãã«ã¤ãã¦ç´¹ä»ãã¾ãã æ©æ¢°å¦ç¿ã¨ãã°ã¨å¯è¦å ç 究ãªã©ã§æ©æ¢°å¦ç¿ãããã¨ãã«å¤§åãªã®ããè¨é²ï¼ãã°ï¼ãåããã¨ãããã¦ã°ã©ããªã©ã§å¯è¦åãããã¨ã§ãã è¨é²ã¨ãã£ã¦ãããã ãã¹ãçµæãPrintãã¦çµããã¨ããããã«ã¯ããã¾ããã ã©ã®ãã¼ã¿ã»ããã使ã£ãããã¢ãã«ã®æ§æ
ã¯ããã« æè¿ã¤ãã«ãGoogle Meet ã«èæ¯ã¼ããæ©è½ãå©ç¨å¯è½ã«ãªãã¾ãããããæ¥æ¬èªã ã¨ã¤ã³ãã¬ã¹ã®ã±ã¼ã¿ã¤ Watchã®è¨äºãªã©ã§ç´¹ä»ããã¦ã¾ãã確ã 2020 å¹´ 9 ææ«åå¾ã§é 次ãªãªã¼ã¹ããã¦ããã¨è¨æ¶ãã¦ãã¾ãã ãã®ã¨ãã¯ãèæ¯ã¼ãããã®æ©è½ãããªãã£ãã®ã§ãããæè¿ï¼ç§ãæ°ã¥ããã®ã¯ 2020/10/30ï¼æ´ã«ã¢ãããã¼ãããã¾ãããã¢ãããã¼ãã§ãèæ¯å·®ãæ¿ããæ©è½ãä»ãã¦ãã¼ããæ©è½ãã¼ããå¹æãå¼·å¼± 2 ã¤ããé¸ã¹ãããã«ãªãã¾ãããã¾ã æ¥æ¬èªã®ãã¥ã¼ã¹è¨äºã¯è¦ã¦ãªãã§ãããGoogleã«ããã¢ãããã¼ãã®çºè¡¨ã¯ã¡ããã¨ããã¦ãã¾ãã ããã¦ãGoogle AI Blog ã§Background Features in Google Meet, Powered by Web MLã¨ããè¨äºãå ¬éãããå®è£ ã«ã¤ãã¦ã®è§£èª¬ãããã¾ããã ãã®è¨äºã¯ãã®è§£èª¬è¨äºã
0. å¿ããæ¹ã¸ å®å ¨ã«ç³ã¿è¾¼ã¿ã¨ããããªããã¦SoTAéæããã Vision Transformerã®éè¦ãªãã¨ã¯æ¬¡ã®3ã¤ã ã ç»åããããåèªã®ããã«æ±ãã ã¢ã¼ããã¯ãã£ã¯Transformerã®ã¨ã³ã³ã¼ãã¼é¨åã ã 巨大ãªãã¼ã¿ã»ããJFT-300Mã§äºåå¦ç¿ããã SoTAãä¸åãæ§è½ãç´$\frac{1}{15}$ã®è¨ç®ã³ã¹ãã§å¾ãããã äºåå¦ç¿ãã¼ã¿ã»ããã¨ã¢ãã«ãããã«å¤§ãããããã¨ã§ã¾ã ã¾ã æ§è½åä¸ããä½å°ãããã 1. Vision Transformerã®è§£èª¬ Vision Transformer(=ViT)ã®éè¦ãªé¨åã¯æ¬¡ã®3ã¤ã§ãã å ¥åç»å ã¢ã¼ããã¯ã㣠äºåå¦ç¿ã¨ãã¡ã¤ã³ãã¥ã¼ãã³ã° ããããã«ã¤ãã¦è¦ã¦ããã¾ãããã 1.1 å ¥åç»å ã¾ãå ¥åç»åã«ã¤ãã¦ã§ããViTã¯Transformerããã¼ã¹ã¨ããã¢ãã«(ã¨ããããä¸é¨ã丸ã 使ã£ã¦ãã)ã§ããã
ä»å¹´ã«å ¥ããAIæ声åæã®åããæ¿ããããã®é²åã®ããããã¯ãªãªãã£ã¼ã®é«ãã«ã¯é©ãã°ããã§ããä¸ã§ã注ç®ãã¹ãã¯ä»å¹´2æã«å½æã®ããã«ç»å ´ããããªã¼ã¦ã§ã¢ã¨ãã¦å ¬éãããNEUTRINOï¼ãã¥ã¼ããªãï¼ã§ããããã¯SHACHI(@SHACHI_NEUTRINO)ãããéçºããããªã¼ã®ã½ããã§ãããããã¾ã§æ±åããããã謡åãããã¦JSUTï¼ããããå¦è¡çã«å ¬éããã¦ããæ声ãã¼ã¿ãã¼ã¹ãå©ç¨ãã¦éçºãã¦ããï¼ã®3ã¤ã®æ声ã©ã¤ãã©ãªãå梱ããã¦ã¾ãããããã«9æ18æ¥ãæ°ãã«æ±åã¤ã¿ã³ã追å ãããã®ã§ãï¼9æ18æ¥ç¾å¨ãå ¬éããã¦ãã0.400ã«ã¯æ±åãããããæ±åã¤ã¿ã³ã®ã¿ãå梱ããã以å¤ã«ã¤ãã¦ã¯å¾æ¥å ¬éããã模æ§ã§ãï¼ã å æ¥ããAIããããã«æ¬¡ã第2ã®AIã·ã³ã¬ã¼ãæ±åã¤ã¿ã³ã®æå±ãã¼ã¿ãã¼ã¹å¶ä½ããã¸ã§ã¯ãã®ã¯ã©ã¦ããã¡ã³ãã£ã³ã°ã¹ã¿ã¼ããã¨ããè¨äºã§ãç´¹ä»ããç¡äºã«ã¯ã©ã¦ããã¡
ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¯ãããããè¨è¨ããããããã¯ã¼ã¯æ§é ã«å¾ã£ã¦ãã¼ã¿ãå ¥åããåºåã«åãã£ã¦è¨ç®ãããªããä¼æ¬ãã¦ãããå¤ãã®åé¡ã§ã¯ãäºåç¥èã使ã£ã¦æ§é ãè¨è¨ãããã¨ã§æ§è½ãä¸ãããã¨ãã§ããã ä¾ãã°ãç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ï¼CNNï¼ã¯ãç»åã¯è¿ãä½ç½®ã«ããæ å ±ãé¢ä¿ãããã¨ããäºåç¥èã使ã£ã¦ãè¿ãä½ç½®ã«ãããã¥ã¼ãã³éã®ã¿ãã¤ãªããã¨ã§ãã©ã¡ã¼ã¿æ°ãæ¸ãããç¹å®ã®ã¢ãã«ãå¦ç¿ãããããããã«ãã¦æ±åæ§è½ãä¸ãã¦ããã ãã®ãããªäºåç¥èã¯å¸°ç´ãã¤ã¢ã¹ã¨ãå¼ã°ããå¦ç¿ãæåãããã®éè¦ãªè¦ç´ ã§ããããããããã¼ã¿ã®æµãæ¹ã¯å¦ç¿ã«ãã£ã¦æ±ºå®ãããã¼ã¿ã«åããã¦å¤ãããã¨ãæã¾ããã èªå·±æ³¨æï¼Self-Attentionï¼æ©æ§1-2ï¼ã¯ããã¼ã¿ã®æµãæ¹èªä½ãå¦ç¿ã決å®ãããããªæ¹æ³ã§ããããã¨ãã¨RNNåãã«ææ¡ãããããCNNãªã©ä»ã®ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«ãå©ç¨ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}