ãã®èªçãå°å æ°èãçµæ¸æ°èãè¨äºã«ããªãã£ããï¼å¹´å¾ããã³ã¼ãã®æ å ±ãç½é»ã®ç¹ã®çµã¿åããã«ç½®ãæãããã¨æä¸æ®µã®ãã¿è¨äºã§åãã¦ç´¹ä»ãããæããã®å½¢ãæãæµ®ãã¹ããã¨ãã§ããèªè ã¯ããªãã£ãããã¾ã説æã®å¿ è¦ãããªããQRã³ã¼ãã¯ãªãéçºãããã©ãåãã®ã ãããã QRã³ã¼ãã¯ãèªåè»çç£ã©ã¤ã³ã®åå®ãªè¦è«ã¨éèªåè»é¨éã®æè¡è ã®ãä¸çæ¨æºã®çºæãããããã¨ããéå¿ã®å¾®å¦ãªæ··äº¤ã®ä¸ã1990年代ååã®æ¥æ¬é»è£ ï¼ç¾ãã³ã½ã¼ï¼ã§éçºãããã ãã¨ã¿ã°ã«ã¼ãã®çç£ç¾å ´ã§ã¯ãé¨ååã¨æ°éã®è¨ãããç©ççãªã«ã³ãã³ãçºæ³¨æ¸ãç´åæ¸ã¨ãã¦è¡ãæ¥ãããã¨ã§å¨åº«ã管çããããã®ãã¼ã¿å ¥åãèªååãããã¼ã³ã¼ãï¼ï¼®ï¼¤ã³ã¼ãï¼ãéçºããã®ããã³ã½ã¼ã ã ããã«å ¨çã®1990å¹´ããã空åã®çç£å°æ°ãå¤æ§ãªè»ç¨®ã»ãªãã·ã§ã³ã«å¿ãããããé¨åãç´å ¥æ¥è ãæ¥æ¿ã«å¢ããNDã³ã¼ããéçãè¿ãã¦ããã63æ¡ã®æ°åãã
TL;DR; We are changing std::sort in LLVMâs libcxx. Thatâs a long story of what it took us to get there and all possible consequences, bugs you might encounter with examples from open source. We provide some benchmarks, perspective, why we did this in the first place and what it cost us with exciting ideas from Hyrumâs Law to reinforcement learning. All changes went into open source and thus I can
Since the work of Kaligosi and Sanders (2006), it is well-known that Quicksort -- which is commonly considered as one of the fastest in-place sorting algorithms -- suffers in an essential way from branch mispredictions. We present a novel approach to address this problem by partially decoupling control from data flow: in order to perform the partitioning, we split the input in blocks of constant s
輸éåé¡ã¨å¼ã°ããåé¡ãããã¾ãï¼ ãã®åé¡ã¯ï¼æ®éã¯ç·å½¢è¨ç»æ³ãããã¼ã®ã¢ã«ã´ãªãºã ã使ã£ã¦è§£ããã¾ãï¼ ãã®è¨äºã§ã¯ï¼ãã®è¼¸éåé¡ãè¿ä¼¼çã«è¡åè¨ç®ã§è§£ãã¢ã«ã´ãªãºã ï¼ã¨ã³ãããã¼æ£åå + Sinkhorn-Knopp ã¢ã«ã´ãªãºã ï¼ãç´¹ä»ãã¾ãï¼ è¼¸éåé¡ã¨ã¯ ã¢ã«ã´ãªãºã å¾ããã解ã®ä¾ ãªãããã§è§£ããã®ãï¼ ç«¶ããã®åé¡ã解ãã¦ã¿ã æ©æ¢°å¦ç¿çéã«ãããæµè¡ ã¾ã¨ã 輸éåé¡ã¨ã¯ 輸éåé¡ã¨ã¯ä»¥ä¸ã®ãããªåé¡ã§ãï¼ ä»¶ã®å·¥å ´ã¨ 件ã®åºèãããªãï¼ããååã®æµéåãããã¨ããï¼ åå·¥å ´ã«ã¯ åã®å¨åº«ããã.ï¼ ååºèã§ã¯ åã®éè¦ãããï¼ å¨åº«ã®ç·åã¨éè¦ã®ç·åã¯çããã¨ãã ï¼ããªãã¡ ï¼ï¼ å·¥å ´ ããåºè ã«ååãä¸ã¤éã¶ããã«ã¯ ã®è¼¸éã³ã¹ãããããï¼ åå·¥å ´ ããååºè ã¸ã®è¼¸éé ãé©åã«æ±ºãã¦ï¼ååºèã®éè¦ãæºããã¤ã¤è¼¸éã³ã¹ãã®ç·åãæå°åããï¼ è¼¸éåé¡ã¯æé©å
Computer Science / Algorithm æ¤ç´¢ã¨ã³ã¸ã³ã®æ°å¤ã¤ã³ããã¯ã¹ãæ¯ãã Bkd-Tree Elasticsearchã®æ°å¤ãã¼ã¿ã¤ã³ããã¯ã¹ã«ä½¿ãããBkd-Treeã¨ããã¢ã«ã´ãªãºã ãè«æãèªã¿ãªããã¾ã¨ãã¾ããã Overview ããã«ã¡ã¯ pon ã§ããElasticsearch & Lucene 輪èªä¼ãå¼ç¤¾ã§æ¯é±éå¬ãã¦ããã®ã§ãããããã§Bkd-Treeã¨ããã¢ã«ã´ãªãºã ã«è¡ãçãã¾ãããããã§Bkd-Treeã®è«æãèªãã§ã¿ãã®ã§ãã¾ã¨ãããã®ãå ±æãããã¨æãã¾ãã è«æã¯ãã¡ã Bkd-Tree: A Dynamic Scalable kd-Tree Luceneã§ã®Bkd-Tree Bkd-Treeã¯Lucene6ããå°å ¥ãããããã§ä¸è¨ã®ããã«ã¹ãã¼ã¹å¹çãããã©ã¼ãã³ã¹ãå¤§å¹ ã«æ¹åãããããã§ãã 以ä¸ãã¡ãã®Elasticsearchå ¬
This document contains a detailed description of the data structures and operations Xi uses for text. These data structures and the merge operation also form a Conflict-free Replicated Data Type (CRDT). It being a CRDT allows Xi to be used for concurrent editing of text on multiple devices, it can merge edits, including those made offline, between multiple devices and converge on a consistent docu
ãã®ã¢ã¬ã³ã¼ã éæ³å°å¥³ã¾ã©ãâãã®ã«å¤ä¼ 第2話 https://abema.tv/video/episode/26-89_s1_p2 ãã®ã¬ã³2話ã«ä»¥ä¸ã®æ©è½ãæã¤ã絶交é段ããã§ã¦ãã¾ã. 絶交é段ã®6段ç®ã«èªåã®åå,7段ç®ã«çµ¶äº¤ãããç¸æã®ååãæ¸ãã¡ããã°ããã絶交証ææ¸ï¼ ãããä»®ã«ãä¸ãä¸ä»²ç´ããªã©ããããã®ãªãè¬ã£ãæ¹ãéã®åãç©ã«æ«ããã¡ããï¼ ãã®çµ¶äº¤é段ã使ã£ããè¨ç®æ©ãä½ãããã§ããã. æ¬è³ªçã«ã¯ãnandã²ã¼ããæ§æã§ããã°è¨ç®æ©ãä½ãããã®ã§,ãã®è¨äºã§ã¯çµ¶äº¤é段ã使ã£ã¦nandã²ã¼ããæ§æããã¨ããã¾ã§ç¤ºãã¾ã. 絶交é段ã®æ©è½ ãã®çµ¶äº¤é段ã®æ©è½ãçæ³ç¶æ ã§ã®æ©è½ã¨ãã¦è§£éããã¨ä»¥ä¸ã®éãã«ãªãã¾ã. äºå¤($1$:ç¾ä¸ã«å± ã, $ 0$:éã®åãç©ã«æ«ããã¦ãã)ãã¨ã人é $a_1,a_2,...$ ãç¡éã«åå¨ãã ãã¢$(a_i,a_j)$ã絶交
Floyd-Warshall ã¢ã«ã´ãªãºã ã¯éã¿ä»ãæåã°ã©ãã®ãã¹ã¦ã®é ç¹å¯¾ã«å¯¾ãã¦æçè·¯è·é¢ãæ±ãã代表çãªã¢ã«ã´ãªãºã ã§ãï¼ã°ã©ãã®é ç¹ã $V = \{1, ..., n\}$ ã¨ãï¼$n \times n$ é å $d$ ã® $(i, j)$ æåãã°ã©ãã® $i, j$ éã®æé· (æããªããã° $\infty$ï¼$i = j$ ã¯ã¼ã) ã§åæåãã¦ãã以ä¸ã®ï¼éã«ã¼ããå®è¡ããã¨ï¼ãã¹ã¦ã®é ç¹ $i$, $j$ ã«ã¤ãã¦ãããã®éã®æçè·¯é·ã $d[i,j]$ ã«å ¥ãã¾ãï¼ãã ãã°ã©ãã¯è² éè·¯ããããªãã¨ãã¾ãï¼ï¼ # Floyd-Warshall ã¢ã«ã´ãªãºã for k = 1, ..., n: for i = 1, ..., n: for j = 1, ..., n: d[i,j] = min(d[i,j], d[i,k] + d[k,j]) ã¨ããã§ï¼Floyd-
Neural Turing Machines Alex Graves gravesa@google.com Greg Wayne gregwayne@google.com Ivo Danihelka danihelka@google.com Google DeepMind, London, UK Abstract We extend the capabilities of neural networks by coupling them to external memory re- sources, which they can interact with by attentional processes. The combined system is analogous to a Turing Machine or Von Neumann architecture but is dif
UNIXã®åºæ¬çãªã³ãã³ãã®1ã¤ã§ããdiffã ããã«å®è£ ããã¦ããã¢ã«ã´ãªãºã ã¯å®ã«èå³æ·±ãä¸çãåºãã£ã¦ãã¾ãã æ¬ç¨¿ã§ã¯ãçè ãéçºããç¬èªã©ã¤ãã©ãªãdtlãããã¨ã«ãdiffã®ããã¿ãã解説ãã¾ãã ã¯ããã« diffã¯2ã¤ã®ãã¡ã¤ã«ããã£ã¬ã¯ããªã®å·®åãåãã®ã«ä½¿ç¨ããããã°ã©ã ã§ãã ã½ããã¦ã§ã¢éçºãè¡ã£ã¦ããæ¹ã§ããã°ãSubversionãGitãªã©ã®ãã¼ã¸ã§ã³ç®¡çã·ã¹ãã ãéãã¦å©ç¨ãã¦ãããã¨ãå¤ããã¨æãã¾ããæ¬ç¨¿ã§ã¯ãã®diffã®åä½åçã«ã¤ãã¦è§£èª¬ãã¾ãã å·®åã®è¨ç®ã®éã«éè¦ãª3ã¤ã®è¦ç´ å·®åãè¨ç®ããã¨ããã®ã¯æ¬¡ã®3ã¤ãè¨ç®ãããã¨ã«å¸°çµãã¾ãã ç·¨éè·é¢ 2ã¤ã®è¦ç´ åã®éããæ°å¤åãããã® LCSï¼Longest Common Subsequenceï¼ 2ã¤ã®è¦ç´ åã®æé·å ±éé¨åå SESï¼Shortest Edit Scriptï¼ ããè¦ç´ åãå¥ã®è¦
æ£è¦åGoogleè·é¢ã¨ããGoogleã®æ¤ç´¢ãããæ°ã«åºã¥ãæå³ã®é¡ä¼¼æ§ã示ã尺度ã«ã¤ãã¦ç´¹ä»ããã ã¯ããã« èªç¶è¨èªå¦çã«ããã¦æå³ãæ±ãéã«ããã表ç¾ã®æå³ã¨å¥ã®è¡¨ç¾ã®æå³ãã©ãã ãé¢ãããããã®ãã¨ãããã¨ãåããã¨æç¨ã§ãããã¨ãå¤ãã以ä¸ã«ç´¹ä»ããæç®ã§ã¯ãæ¤ç´¢ã¨ã³ã¸ã³Googleã§ã®ãããæ°ãç¨ãã¦ãæå³ã®é¢ããã®å¼·ãã測ãææ³ãæå±ããã¦ããã Cilibrasi, R. L. & Vitanyi, P. M. B. (2007). The Google Similarity Distance. IEEE Transactions on Knowledge and Data Engineering, 19(3), 370-383. ï¼ãã®ãã¼ã¸ããPDFããã¦ã³ãã¼ãå¯ãï¼ ä»åã¯ããã®è«æã®å 容ã«ã¤ãã¦ç´¹ä»ããããæ£ç´è¨ã£ã¦ããã®è¾ºã®è°è«ã¯èªåã®å°éå¤ã§ãè«æããã£ãã
ã¯ã¦ãªã¢ããªã±ã¼ã·ã§ã³ã¨ã³ã¸ãã¢ã® id:takuya-a ã§ãã ãã®è¨äºã§ã¯ãMicrosoft ã®æ¤ç´¢ã¨ã³ã¸ã³ Bing ã§æ¡ç¨ããã BitFunnel ã¢ã«ã´ãªãºã ãç´¹ä»ãã¾ãã æ¨å¹´ã®ã¨ã³ã¸ãã¢ã¢ããã³ãã«ã¬ã³ãã¼ã§ã¯ãæååæ¤ç´¢ã®ã¢ã«ã´ãªãºã å ¨è¬ã«ã¤ãã¦ç´¹ä»ãã¾ããï¼æååã¢ã«ã´ãªãºã ã®å¦ã³ãã - Hatena Developer Blogï¼ãä»å¹´ã¯ãã®ãªãã§ããã¤ã³ããã¯ã¹ï¼ç´¢å¼ï¼ã使ã£ãå ¨ææ¤ç´¢ã¢ã«ã´ãªãºã ã«ã¤ãã¦ã®ã話ã«ãªãã¾ãã ãã®è¨äºã®ååã¯å ¨ææ¤ç´¢ã®å ¥éã«ããªã£ã¦ãã¾ãã®ã§ãæ¤ç´¢æè¡ã«ãªãã¿ããªãæ¹ã«ã楽ããã§ããã ããã®ã§ã¯ãªãã§ããããã éã«ãããããªã®ããç¥ã£ã¦ããï¼ãã¨ããæ¹ã¯ãæ¬é¡ã§ãããBitFunnel ã¢ã«ã´ãªãºã ã®è©³ç´°ãããç®ãéãã¦ããã ããã°ã¨æãã¾ãã ãã®è¨äºã¯ãã¯ã¦ãªã¨ã³ã¸ã㢠Advent Calendar 2017ã®21æ¥ç®ã®
ããã«ã¡ã¯@hagino3000ã§ããZucks Ad Networkã¨ããåºåé ä¿¡ãµã¼ãã¹ã®éçºããã¦ãã¾ããæè¿ã¯ã¢ããããã¯ã¼ã¯ã®åºåé ä¿¡æé©åã«å©ç¨ã§ããã¢ã«ã´ãªãºã ã®èª¿æ»ããã¦ãã¾ãã æ¬ç¨¿ã§ã¯èª¿æ»ã§èªãã è«æã®ä¸ã¤ããªã³ã©ã¤ã³åºåé ä¿¡ãæ³å®ããå¤è ãã³ãã£ããåé¡ã§ãããMortal Multi-Armed Banditsãç´¹ä»ãã¾ããå¤è ãã³ãã£ããåé¡ã«ãªãã¿ãããèªè ãæ³å®ãã¦ãã¾ãã papers.nips.cc ãªã³ã©ã¤ã³åºåã¨å¤è ãã³ãã£ããåé¡ ããã§ã¯ç°¡åã®ããã«ãã¯ãªãã¯èª²éåã®ãã£ã¹ãã¬ã¤åºåãåæã«èª¬æãã¾ãããªã³ã©ã¤ã³åºåé ä¿¡ã·ã¹ãã ã«ãããåé¡ã¨ãã¦ãæåã¯ã©ã®åºåãã©ãã ãã¯ãªãã¯ããããããããªããããªãã¹ãã¯ãªãã¯ãããåºåãå¤ãé ä¿¡ãããããã¨ããç©ãããã¾ããããã¯å¤è ãã³ãã£ããåé¡ã¨ãã¦ç¥ããã¦ãããæ¢ç´¢ã¯CTRãæ¨å®ã§ããã¾ã§é ä¿¡ããäº
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}