[ 第1å· | 第2å· ] 第58å·» 第1å· ç¹éãæ¥æ¬äººã®å½æ°æ§èª¿æ»ç 究ï¼å¹³ææã®20å¹´ï¼ã ãç¹é æ¥æ¬äººã®å½æ°æ§èª¿æ»ç 究ï¼å¹³ææã®20å¹´ï¼ãã«ã¤ã㦠..........ä¸æ é (58, 1-2) å ¨æpdf 調æ»ä¸è½ãããå ´åã®æ¨æ¬èª¿æ»ã«ãããã»ããã©ã¡ããªãã¯æ¨å®ã¨æ度åæï¼æ¥æ¬äººã®å½æ°æ§èª¿æ»ãã¼ã¿ã¸ã®é©ç¨ ..........æé å´å® (58, 3-23) è¦æ¨ å ¨æpdf 調æ»ã¸ã®æåæ§å¤æ°ãç¨ãã調æ»ä¸è½ãã¤ã¢ã¹ã®äºæ®µè£æ£ âãæ¥æ¬äººã®å½æ°æ§ç¬¬12æ¬¡å ¨å½èª¿æ»ãã¸ã®é©ç¨â ..........åå± éè£ (58, 25-38) è¦æ¨ å ¨æpdf ç¾ä»£æ¥æ¬äººã«ã¨ã£ã¦ã®ä¿¡ä»°ã®æç¡ã¨å®æçãªå¿ï¼æ¥æ¬äººã®å½æ°æ§èª¿æ»ã¨å½éæ¯è¼èª¿æ»ããï¼ ..........æ æ (58, 39-59) è¦æ¨ å ¨æpdf çµ±è¨çæ¥æ¬äººç 究éæ - ããå½æ°æ§èª¿æ»ä¿ã®36å¹´ã®æãåº - ......
id:syou6162 㮠確çè«ãçµ±è¨å¦é¢é£ã®Webä¸ã®è³æ â Seeking for my unique color. ãè¦ã¦ããã俺ãæ¸ãããã¨ãæã£ã¦æ¸ãå§ããã¯ãããã©å ¨ç¶ã¾ã¨ã¾ãããªãã ããã¯å¤åãèªåã®èå³ãæ¡æ£ãã¦ããããã²ã¨ã¤ã®åéã«ã¤ãã¦éä¸ãã¦èª¿ã¹ã ãã¨ããã¦ããªãã®ã ã¨æã£ã¦ããããããã¨ã«ãããã å ¬éãã¦ãæå³ãªãæ°ããããã©ããã£ããæ¸ããã®ã§å ¬éããw PDFã¨ãåã ã®ãã¼ã¸ã«ãªã³ã¯ã¯ãã®ã大å¤ã ã£ãã®ã§ã大æ¬ã®ãã¼ã¸ãããã°ããã ã ã«ãªã³ã¯ã¯ããã¨ã«ããã ç©ç ç°å´æ´æ å çï¼å¦ç¿é¢å¤§å¦çå¦é¨ç©çå¦ç§ï¼ã®ãã¼ã ãã¼ã¸ çµ±è¨ç©çã¨ãããããã¿ç¾¤ã¨ãã æ¥æ¬èªã§æ¸ããæç« ããã¤ãã®è§£èª¬ ãããã¿ç¾¤ã¨ã¯ãªã«ã ã¹ãã³ã¯ããã â å¼·ç£æ§ã®èµ·æºããããçè« Hubbard 模åã®æ°çã¨ç©ç çµ±è¨ç©çå¦ã®åºç¤ãããã£ã¦ ãã©ã¦ã³éåã¨é平衡統è¨åå¦ ãã
é¢æ°è§£æå ¥é I å ç©ç©ºéãã¼ã1 æ¡ç° ç¥å² 2004 å¹´ 8 æ 16 æ¥ 1èªåã®ããã®æ³¨: ~/math/functional-analysis/functional-analysis-1.tex ç® æ¬¡ 第 1 ç« å ç©ç©ºéæ¦èª¬ 3 1.1 çè ã¨å ç©ç©ºé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 ä¸çå¼ã¨æ£å°å½± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 æ£è¦ç´äº¤ç³» . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Fourier å±é . . . .
ãã¡ãã®è¨äºãã©ãã ã«æ³¨æããã° å¹³åãmã§ãæ¨æºåå·®ãã§ãã確çåå¸ã¯ãå®ç¾©ãã ãã®æ¡ä»¶ãæºãã確çåå¸ã§ãã¨ã³ãããã¼ãæ大ã«ããã®ã¯ãæ£è¦åå¸ã§ãããã¨ã示ããããã®å¾ã¯ãä¸ã«æãããªã³ã¯ãã®ã¾ã¾ãªã®ã§å²æãã ã©ã°ã©ã³ã¸ã¥ã®ä¹æ°æ³ã使ããã¦ãã
2003 å¹´ 11 æ 12 æ¥ 29 .....2.5..... æå°¤æ³ã¨ãã®è¨ç®ã¢ã«ã´ãªãºã ããã§ã¯ï¼æå°¤æ¨å®å¤ãæ°å¤è¨ç®ã§æ±ããæ¹æ³ã 3 ã¤ç´¹ä»ããï¼ 2.5.1 ãã¥ã¼ã ã³ã»ã©ãã½ã³æ³ ãã¾ï¼g : R â R ã 2 éå¾®åå¯è½ãªé¢æ°ã¨ã ï¼æ¹ç¨å¼ g (x) = 0 ãã¿ãã解 x = c ãã¿ã¤ã ããï¼ãã®ããã«ï¼c ã«è¿ã x ã«å¯¾ãã¦ï¼ãã¼ã©ã¼å±éãããï¼ 0 = g (c) â g (x) + g (x)(x â c) Ë ãã ãï¼g (x) = dg/dx ã§ããï¼g (x) = 0 ã®ã¨ãï¼ããã c ã«ã¤ãã¦è§£ãã° Ë Ë câxâ g (x) g (x) Ë ãå¾ãï¼åæå¤ x0 ãåãï¼ç¹å {xn }â ãé次çã« n=1 xn+1 = xn â g (xn ) , g (xn ) Ë n = 0, 1, . . . (2.7
JRI is a Java/R Interface, which allows to run R inside Java applications as a single thread. Basically it loads R dynamic library into Java and provides a Java API to R functionality. It supports both simple calls to R functions and a full running REPL. In a sense JRI is the inverse of rJava and both can be combined (i.e. you can run R code inside JRI that calls back to the JVM via rJava). The JG
What's this? Ring library is a library for R which can output a statistical graph in an SVG format. Features of this library are that the graph possesses the following interactivity not only a graph of the SVG format can be merely output. Zoom and Pan without image quality -- SVG Viewer and the Web browser which can display SVG possess this facility. Tooltip for interesting data point -- When m
ãã¼ã¿åæããå°ãåºãããã¤ã³ãµã¤ãç¡ãã«AIï¼äººå·¥ç¥è½ï¼ã®æ´»ç¨ã¯å§ã¾ãã¾ãããç§ãã¡ã¯ãåæ¥çç¥èã¨ãã¼ã¿ã»ã¢ããªãã£ã¯ã¹æè¡ãé§ä½¿ããã¼ã¿ããªãã³çµå¶ãå¼·åã«æ¯æ´ãã¾ãã ãã¼ã¿ãã¢ããªãã£ã¯ã¹ãAIã¯ä¼æ¥ã«ã¨ã£ã¦ç«¶åä»ç¤¾ã¨ã®å·®å¥åãå³ããã¤ã¦ãªãã»ã©å¤§ããªè¦å ã«ãªã£ã¦ãã¾ããä»æ¥ã®çµå¶å¹¹é¨ãå¹çãåä¸ããªããæ°ããªåçæºãéæããæ°ãããã¸ãã¹ã¢ãã«ãã¿ã¤ã ãªã¼ã«æ§ç¯ããæ¹æ³ã模索ããä¸ã価å¤ãçã¿åºãæé·ãç¶ããä¼æ¥ã«ã¯ããã¼ã¿æ´»ç¨ãã¨ããå ±éé ãããã¾ããç§ãã¡ã¯ãç¡æ°ã®ãã¼ã¿ããä¼æ¥ã«ã¨ã£ã¦æ¬å½ã«å¿ è¦ãªãã¼ã¿ãæ´»ç¨ããããã®æ¹æ³ãç¥ã£ã¦ãã¾ãã å°æ¥ãè¦æ®ãããªãã¬ã¼ã·ã§ã³ä½å¶ãåãã¦ããä¼æ¥ã®åæ°ä»¥ä¸ï¼52ï¼ ï¼ã¯ããã§ã«ãã¼ã¿ã¨ã¢ããªãã£ã¯ã¹ã大è¦æ¨¡ã«æ´»ç¨ãã¦ãã¾ãããã¼ã¿ã¨AIã«é¢ããåãçµã¿ããã¸ãã¹æ¦ç¥ã«æ²¿ã£ã¦å®æ½ãããã¨ã§æè³å©ççãè¿ éã«æ大åããæçµçã«ã¯AIãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}