ãã®è¨äºã¯æ°éæ·³ä¸æ°ã®ããã°ãPublickeyãã«æ²è¼ããããITããªã¼ã©ã³ã¹ã対象ã¨ããå½ã®å´ç½ä¿éºãç¹å¥å å ¥å¶åº¦ããä»æ¥ããã¹ã¿ã¼ããããªã¼ã©ã³ã¹ã§ãéå¤ãä»äºã«ããã±ã¬ãç æ°ãé害ãæ»äº¡ãªã©è£åãï¼2021å¹´9æ1æ¥æ²è¼ï¼ããITmedia NEWSç·¨éé¨ã§ä¸é¨ç·¨éãã転è¼ãããã®ã§ãã ããªã¼ã©ã³ã¹ã®ããã°ã©ãã¼ãWebãã¶ã¤ãã¼ãªã©ã®ãããããITããªã¼ã©ã³ã¹ãéå¤ãä»äºã§è¢«ã£ãã±ã¬ãç æ°ãé害ãæ»äº¡ãªã©ã«å¯¾ãã¦è£åãè¡ããããå½ã«ããå´ç½ä¿éºã®ç¹å¥å å ¥ã®å¯¾è±¡æ¡å¤§ãä»æ¥ã2021å¹´9æ1æ¥ããã¹ã¿ã¼ããã¾ããã å´ç½ä¿éºã¨ã¯ãéå¤ãä»äºã«ããã¦è¢«ãã±ã¬ãç æ°ãé害ãæ»äº¡ã«å¯¾ãã¦ãæ²»çè²»ãªã©ã®çé¤è²»ãä¼æ¥ããéã®ä¼æ¥æéã®çµ¦ä»ãæ²»çå¾ã«é害ãæ®ã£ãå ´åã®çµ¦ä»ãæ»äº¡ããå ´åã®éºæã¸ã®çµ¦ä»ãªã©ãè¡ããã®ã§ãå½ã管æãã¦ãã¾ããç æ°ãã±ã¬ã®éã®å»çè²»ãä¸é¨è² æ ãã社ä¼ä¿éºï¼å¥åº·ä¿éºï¼ã
ã°ãã¼ãã«åãé²ã¿ãå½å¢ãè¶ ãããéã®ããåããè¤æ°ã®é貨ã®ä¿æãªã©ãä¸è¬çã«ãªã£ã¦ãã¾ãããããã§è©±é¡ã«ãªã£ã¦ããã®ãå½éçãªãã¸ã¿ã«éè¡ã®Revolutã§ãã Revolutï¼ã¬ããªã¥ã¼ãï¼ã§ã¯ãæµ·å¤ééãææ°æç¡æã®é貨両æ¿ãå¤è²¨ã®ã¾ã¾æ±ºæ¸ã§ããããããã«ã¼ããªã©ãå©ç¨å¯è½ã3ã¤ã®ä¼å¡ãã©ã³ãããã®ã§ããã¼ãºã«åããã¦ä¾¿å©ã«ä½¿ããã¨äººæ°ãéãã¦ãã¾ãã ãã®è¨äºã§ã¯ããããªRevolutã«ã¤ãã¦ãææ°æããã¢ã«ã¦ã³ãã®éè¨æ¹æ³ã¾ã§è©³ãã解説ãã¦ããã¾ãããã¬ããªã¥ã¼ããæ°ã«ãªããã©ä½¿ãæ¹ãããããªããã¨ãã人ã¯å¿ è¦ã§ãã ããã«ãéææ§ã®é«ãææ°æã§ééã§ããWiseã®æµ·å¤ééã¨ãå¤è²¨æ±ºæ¸ã«ç¹åããWiseããããã«ã¼ãã«ã¤ãã¦ã触ãã¦ããã¾ãã ç®æ¬¡ð Revolutï¼ã¬ããªã¥ã¼ãï¼ã¨ã¯ï¼ Revolutï¼ã¬ããªã¥ã¼ãï¼ã¯ãã¤ã®ãªã¹çºã®ãã¸ã¿ã«éè¡ã»æµ·å¤ééãµã¼ãã¹ã§ãã2015
SIGNATEã§éå¬ããããæ¥æ¬åå¼æã°ã«ã¼ã ãã¡ã³ãã¡ã³ã¿ã«ãºåæãã£ã¬ã³ã¸ ãã§æ«å®1ä½ã¨ãªã£ã¦ããæ ªä¾¡ã®å¤åãã®äºæ¸¬ææ³ã«ã¤ãã¦ã®è§£èª¬
PFNã§éèã»æ©æ¢°å¦ç¿ã®ç 究éçºãè¡ã£ã¦ããã¨ã³ã¸ãã¢ã®ä¼è¤å åã§ãã人工ç¥è½ï¼ç¹ã«èªå¾ã¨ã¼ã¸ã§ã³ãã¨ãã«ãã¨ã¼ã¸ã§ã³ãã·ã¹ãã ï¼ã®ãããä¼è°ã®ã²ã¨ã¤ã§ããAAMAS 2021ã«ãPFNã®ä¼è¤å åã»å賢太éã»ä»åå¥å¤ªéã¨éæã¢ã»ããããã¸ã¡ã³ãæ ªå¼ä¼ç¤¾ã®ä¸å·æ §æ°ãå ±åã§å·çããæ ªä¾¡äºæ¸¬ã«é¢ããè«æâTrader-Company Method: A Metaheuristic for Interpretable Stock Price PredictionâãFull paperã§æ¡æããã¾ãããæ¬è¨äºã§ã¯ãã®å 容ã«ã¤ãã¦ç°¡åã«ç´¹ä»ãããã¨æãã¾ãã Disclaimer: The views expressed here are our own and do not necessarily reflect the views of Preferred Networks and Nomura
ã¨ãã£ã¦ã俺ã®ããæè³è©±ãªãã¦ããã£ãã¨iDeCoã®å£åº§ãä½ã£ã¦æ¯æå¯è½ãªéãæ大é¡ãæ¯ãè¾¼ãã§ã¤ã³ããã¯ã¹ãã¡ã³ãï¼ã§ããã°VFIAXãVTSAXï¼ãè²·ãç¶ãããã¨ããå人年ééç¨ã®åºæ¬ä¸ã®åºæ¬ãªãã ãã©ããããå¨ãã®é£ä¸ã«è©±ãã¦ããæè³æãããæè³ã¯ãªã¹ã¯ãã¨ãæãè¾¼ãã§æãåºããªãé£ä¸ãä¸å®æ°ãã¦æ¯åã©ããããããªããªã¨æãããããããå¦æ´ã¨ãé¢ä¿ãªããããã£ãæè³è©±ã«æå¦åå¿ã示ã人ãä¸å®æ°ããã 俺ã®è©±ãéæã¡ç¶ããã®ãããã¯ã¼ã¯ãã¸ãã¹ã¨ãããã¿è¬ã®å§èªã¨åã¬ãã«ã«æã£ã¦ãã®ãï¼ã¤ã³ããã¯ã¹ãã¡ã³ãã§ã®æè³ã®ãªã¹ã¯ã¯ï¼ï¼å¹´ï½ï¼ï¼å¹´åä½ã§éç¨ããã°èª¿æ´ã§ããããããããç¾éã®ã¾ã¾æã¡ç¶ãããã¨ããªã¹ã¯ãªãã ã¨ããæ¦å¿µãç解ã§ããªãã£ã½ããçæ°è³ã¨æç³»è³ã£ã¦ãã¤ã ãããï¼ï¼æããããã ãã© ä½åå ¥ã§å人年éã«æè³ããä½è£ããªãã£ã¦å±¤ã¯å¥ã®è©±ã¨ãã¦ãããç¨åº¦ã®ä½è£ãããã®ã«å人年éã«
ã¯ããã« æ©éã§ãããçããã¯æè³ããã¦ããã§ããããããã¦ããã¨ããã°ãã©ã®ãããªæè³ããã¦ããã£ãããã§ããããã ä¸ã®ä¸ã«ã¯æ§ã ãªæè³å¯¾è±¡ãåå¨ããã¾ããã®æè³ææ³ãæ§ã ã§ããæè³ã«é¢ããæ å ±ã¯ä¸ã®ä¸ã«æº¢ãã¦ãã¾ãã氾濫ãã¦ããã¨è¨ã£ãã»ããããããããã¾ãããæ¸ç±ãä¾ã«åãã¨ãçãæå¥ã§æè³ã奨å±ããã©ã¤ããªå ¥éæ¸ããéèã®å°éæ¸ã¾ã§ãããã¨ä¸¦ã³ã¾ããã¾ãããã°ãSNSãéè¦ãªæ å ±æºã¨ãªã£ã¦ãããæè¿ã§ã¯æè³åãã®YouTubeã人æ°ãéãã¦ããããã§ãã ãããããã ãå¤æ§ãªæ å ±ã½ã¼ã¹ãåå¨ããã«ãé¢ããããæè³ã§æåãåãããã¨ãã§ããã®ã¯ããä¸æ¡ãã§ããå°ãå¤ããªãµã¼ãã«ãªãã¾ãã2015å¹´ã®éæèå¸ã®å人æè³å®¶ãªãµã¼ãã§ã¯ãéç®ã§å©çãåºã¦ããå人æè³å®¶ã®å²åã¯9.3%ã¨ã®ãã¨ã§ããã©ããã¦ãã®ãããªäºæ ã«é¥ã£ã¦ãã¾ãã®ã§ãããããæè³ã®åç´è ã®æ¹ã¯ã©ã®ãããªã¢ããã¼ããã
ä¸ããªã質åãç¸æ¬¡ãä¸ãã¬ããã®è³ªåãããã¨ããããã¾ãã ä»°ã£ã¦ããã®ã¯ Rossã®APTã®æèã§ã®ããªã¥ã¼ãã¡ã¯ã¿ã¼ãæ¢ããã¨ãã話ã§ãããã (ããªã¥ã¼)ã¯ãªã³ãã®ãã¥ã¢ããªã¥ã¼æ½åºè½åä½ä¸ã¨ä»°ãããã«ãå°ãªãã¨ãä»ã財å諸表ã ããé ¼ãã«ãã¥ã¢ããªã¥ã¼ãæ¢ãã®ã¯å°é£ãªã®ã§ããªã«ã¿ããã¼ã¿ã®æ´»ç¨ã¯æ¥åã ã¨æãã¾ããç¹ã«ä¼æ¥éã®ãªã¬ã¼ã·ã§ã³ããµãã©ã¤ãã§ã¼ã³ãã¼ã¿ã¿ãããªã®ã¯æ³¨ç®ããã¦ã¾ãããçµã¿åããã§å¹ããããªæ°ã¯ãã¦ã¾ããã¯ã©ã¹ã¿ãªã³ã°ã«ããå±æçãªããªã¥ã¼ã¯å¹ãã¦ãããããã®ã§ã復活ã®ä½å°ã¯ã¾ã ããããã¨æã£ã§ãã(ã¨ä¿¡ãã¦ã¾ã) ã¡ãªã¿å人çã«ã¯åè ã®å²åãç¸å¿ã«ã¯ããã¨æã£ã¦ã¾ãã¦ããã10å¹´ã®ããã·ãåã®å¢ããä¸éã®ããã¼ä¾çµ¦ã«ããéå©ä½ä¸ã«ãã£ã¦ãå²é«ã§å£²ããããã¨ããæ©ä¼ãç¹ã«æ¸ã£ã¦ããªã¨ããæ°ã¯ãã¦ã¾ãã(ãããã調æ´æ¸ã¿å²å®ã¿ãããªã®ã¯ã¡ããã¨è²·ããã¾ã) ãããã
ãçµæ¸å¹æãåããã¨ããã®ããã½ã§ãååãããããã®ã¯arbitrageã®å¯¾è±¡ã§ãã å¾è ã«ã¤ãã¦è¨ãã°ã10ã®è³éã§100ã®ç±³åµãè²·ãã®ãå ç©ã¨ããã¨ãexplicitãªããã¸ã¯è¨¼æ éåã®10ã§ããã®ã¯ç¢ºãã§ãããå·®åã®90ã¯ãã«ã調éãã¦ããã®ã¨åãã§ãããªã®ã§å¥ã«å¾ã«ã¯ãªãã¾ããã(ããã§ã¯çºæ¿ã®ãã¼ã·ã¹ã0ã¨ãã¦ã¾ãã大ä½åã®ãã¼ã·ã¹ã¯ãã¤ãã¹ãªã®ã§ãã¼ã·ã¹åã«éãã°ç¯ç´å¹æãããã¾ãã) å ·ä½çã«ããã¾ããããã ç¾ç©ã ã¨ããã¸ç±³åµã®å©åã㯠A:ç±³åµå©åã-(ãã«èª¿éã³ã¹ã:ãã«çæéå©+åéç¨éå©:åçæéå©)ã§ãã()å ãä¿ã«è¨ãããã¸ã³ã¹ãã§ãã ãã¦ãç±³åµå ç©ã¯å ç©ã®å©åãã«ç¸å½ããã¤ã¡ã¼ã¸ã¯ (ç±³åµå©åã-ãã«èª¿éã³ã¹ã:ãã«çæéå©) ã«ãªãã¾ããç¡ãªã¹ã¯éå©ã§åãã¦ãããåµå¸ã«çªã£è¾¼ãã¤ã¡ã¼ã¸ã§ããããªã®ã§ããããç¾ç©ãããå©åãã¯ä¸ããã¾ãã ã¨ããã§ç±³åµå ç©ã«
åæ ä»åã¯ãã¡ãã®è«æ(The Kelly Criterion: Implementation, Simulation and Backtest, Niels Wesselhofft)ã®èªæ¸ææ³æãæ¸ãã¦ããããã¨æãã¾ãã ç§èªèº«ã®ç¥èã®æ´çã¨çããã®åèã«ãªãã°å¹¸ãã§ãã ããã¾ã§ãèªæ¸ææ³æã§ãããããããã¾ã§åèã¾ã§ã«ãé¡ãè´ãã¾ãã ã¾ããåæã®èª¤æ¤ãè¨ç®ãã¹ãå¤ãã£ãã®ã§ããããã¡ãã¯ãã¡ãã§åºæ¥ãéãè¨æ£ããã¦ããã ãã¦ããã¾ãã ã¾ãããã®è¨äºãä¸ããå¦ä½ãªãçµæã«å¯¾ãã¦ã責任ã¯æã¡ã¾ããã®ã§ãã容赦ãã ããã¾ãã å°é家ããã®æè¦ããå¾ ã¡ãã¦ããã¾ãã®ã§ãã©ãã©ãã³ã¡ã³ããã¦ä¸ããã¨å¹¸ãã§ãã æ¦è¦(ãã®è«æã®ä¸»æ¨) ãã®è«æã§ã¯ããã¼ããã©ãªãªçè«ã§åºã使ç¨ãããå¹³ååæ£ã¢ããã¼ã以å¤ã§ãã±ãªã¼åºæºã«ããã¢ããã¼ããæ¤è¨¼ãã¾ãã主ã«ã·ãã¥ã¬ã¼ã·ã§ã³ç 究ããã³çµé¨ã«åºã¥
ããã¾ã§ãã 人ç100å¹´æ代ã§ãã£ã¦ãããªã³ãã»ã°ã©ããã³æ°ã®ãLIFE SHIFTãèªãã ãã¨ããã¾ããã¾ï¼ã©ããªææ³æã¡ã¾ããï¼ããããã人ç100å¹´æ代ãåå¼·ã»å°±è·ã»èå¾ã®3ã¹ãã¼ã¸ã©ã¤ããããã«ãã¹ãã¼ã¸ã©ã¤ãã«ã·ãããã¾ããããã£ã¦è¨ããããã¨ã¯åãããã©ãã¿ããªãã¿ããªãããªçãæ¹ã§ããªããããã£ã¦ããã³ããããããªããã¾ãï¼å ç«ã¤ãã®ããªãã¨100å¹´çããã£ã¦è¨ããã¦ãä¸å®ã®ã»ãã大ãããªãã ãããªãã¨é¿ãã¦éããªãã®ãè³ç£éç¨ãã¾ãããªãããã«ãã¹ãã¼ã¸ã©ã¤ãã«é©å¿ããã¨ãã¦ãçµ¶å¯¾å¿ è¦ã«ãªããç°æç¹éã§çºçããCFã¤ã³ããã¼ã¨ã¢ã¦ãããã¼ããèªåã®äººçããã彩ãè±ãã«ãªãããã«çµã¿åãããããã«å¿ è¦ã«ãªãã®ãè³ç£éç¨ãã¾ãã¨ã¯ãããããã®ããã«éç¨ãããã¨æã£ã¦ãããã®ããã«ã²ãããåå¼·ãã失æãéãã¦çµé¨ãç©ãæéããã人ã¯ãããªã«å¤ãã¯ãªããã¨ãªãã¨ãæè³ä¿¡è¨ãET
å°ãªãã¨ãããã®åéã«çµé¨ã®ç¡ã人ããã®æ¬ã ããèªãã§ãã»ã¨ãã©ç解ã§ããªãã§ãããã ãã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ã«å¯¾å¿ããPythonã©ã¤ãã©ãªã¨Jupyter notebookãåå¨ããã§ãããããããã¨ãªããï¼ ãã®ãã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ãå ã«ãã¦å®éã«ã³ã¼ãã«èµ·ããããJupyter notebookã¨Pythonã©ã¤ãã©ãªãåå¨ãã¾ãã http://www.quantsportal.com/ Jacques Joubertãããéè¨ãã¦ããWebãµã¤ãã§ãããå½¼ã®ä¿®å£«èª²ç¨ã®ããã¸ã§ã¯ããããã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ãã«åºã¥ããPythonã©ã¤ãã©ãª(mlfinlab)ã®ä½æã¨ãã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ãJupyter Notebookã§è§£èª¬ããç©ããã®è§£èª¬pdfã¨ããç©ã§ãã ãã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ã§èª¬æããã¦ããæ¦å¿µã«ã¤ãã¦å®éã«ã³ã¼ãåããã¦ãã¾ãã ãããã®ã³ã¼ããèªãã§ããã¨ããã¡ã¤ãã³ã¹æ©
Quant College ãã©ãã¯ã¼4ä¸äººè¶ ãã®ç®¡ç人ã«ããéèå·¥å¦è§£èª¬ãµã¤ããããªããã£ãã®ä»çµã¿ã¨ãã©ã¤ã·ã³ã°(æ価è©ä¾¡ãä¾¡æ ¼è¨ç®)ã®æ¹æ³ãéèå·¥å¦ã»æ°çãã¡ã¤ãã³ã¹ãæ©æ¢°å¦ç¿ãã§ããéãæ°å¼ãªãã§ç°¡åã«ãããããã説æãããªããã£ããä»çµåµã®ååæ§ã«ã¤ãã¦ã¡ãªããã»ãã¡ãªããããªã¹ã¯ãæ°å¼ãªãã§ç´è¦³çã«èª¬æãããããã®æ¬ãUdemyè¬åº§ãææ³ã¨ã¨ãã«ç´¹ä»ã»ã¬ãã¥ã¼ãã¯ãªã³ãã®æ°åæ¡ç¨ã»å°±æ´»ãä¸éæ¡ç¨ã»è»¢è·æ´»åã«é¢ããè¨äºã¾ã§ç¶²ç¾ ã ãããã¦èªã¿ãã ãææ³ãããããããã®Udemyåç»è¬åº§ï¼æ©æ¢°å¦ç¿ã»ãã¼ã¿ãµã¤ã¨ã³ã¹ã«å¿ è¦ãªæ°å¦ã¨Pythonã®å ¥éç·¨ãéææ´æ°ã | Quant College ãææ³ãããããããã®Udemyåç»è¬åº§ï¼æ©æ¢°å¦ç¿ç·¨ãéææ´æ°ã | Quant College éèå·¥å¦é¢é£ã§ããããã®æ¬ï¼ã¾ã¨ãï¼ç®æ¬¡ï¼ | Quant College LIBORå»æ¢ã¨
ã¯ããã¾ãã¦ãããã¾ã¨ç³ãã¾ãã æ®æ®µã¯Twitterã§éèå¢ã¨ãã¦æ¥æ¬ã®éèãªãã©ã·ã¼ãä¸ããããã«æ´»åããªãããæ¥ä¸ã¯éèæ©é¢ã§ããªããã£ãé¢é£æ¥åã«å¾äºãã¦ãã¾ãã ããã¯åã®é ã®ä¸ã®è½æ¸ãã§æ´çãããã¦ããªãã§ãããéèãéãã¦ä¸ã®ä¸ãå°ãã§ããã¿ã¼ã«ãªãã°ã¨æã£ã¦èãã¦ã¿ã¾ãããä»å¾ãå°ããã¤è¿½è¨ãã¦ããããã¨æãã¾ãã ï¼. 顧客ç®ç·ã§è¦ãDXæ¨ä»ããºã¯ã¼ãåãã¦ããDXã«ã¯ãæèè ã®æ¹ã ãè¨ãããã«è¤æ°ã®æ®µéãããã¨æããåãå£ã¯è²ã ãã£ã¦è¯ãã¨æãããä»åã¯ãµã¼ãã¹ãåãã顧客ã®ç®ç·ããDXã次ã®3ã¤ã«åãã¦ã¿ã¾ãã â æ¢åæ¥åã®å¹çå â¡ ãã¸ãã¹ã®ä¸é¨ãã¸ã¿ã«å ⢠ãã¸ã¿ã«å以é ãã®3段éã¨ä¸¦è¡ãã¦ããªã³ã©ã¤ã³ã¨ããæ°ããªãã¸ãã¹ãã£ãã«ãèµ°ã£ã¦ãããã¾ãããªãã¼ã«éèã«ããããªã³ã©ã¤ã³ã®æ´å²ããããããããã 1990年代ã«å ¥ããä¸è¬å®¶åºã®ãããPCæ®åã«ä¼´ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}