ã¢ããã«ã®iOSããã³OS Xã®ããã®ããã°ã©ãã³ã°è¨èª Swift 㨠ãªãã¸ã§ã¯ãæåè¨èªã¨é¢æ°åè¨èªã®ç¹å¾´ãçµ±åããããã°ã©ãã³ã°è¨èª Scala ãã¨ã¦ã ä¼¼ã¦ããã®ã§ã¡ãã£ã¨æ¯è¼ãã¦ã¿ã¾ããæ¯è¼ã ããã¦ããã®ã§ãããããã®ç´°ããè¨èªä»æ§ã¯åãµã¤ãã§ç¢ºèªãã¦ä¸ããã Scala ã¯ããã£ã¨ç°¡åãªï¼çç¥ããï¼è¨è¿°ãã§ãã¾ãããSwiftã¨ã®æ¯è¼ãåãããããããããã«ã¡ãã£ã¨åé·ãªè¨è¿°ã«ãã¦ãã¾ãã â» åæã®ãã¼ã¸ã§ã³ã®Swiftããã¨ã«è¨è¿°ãã¦ãã¾ããææ°ã®ãã¼ã¸ã§ã³ã® Swiftã§ã¯ãä¸é¨è¨è¿°æ¹æ³ãå¤æ´ããã¦ãã¾ãã åºæ¬ ãã¤ã®ãã¡ãã»ã¼ã¸
J O U R N A L O F HAMRADIO INFORMATIC S L E T T E R S T H E U N I V E R S I T Y O F T O K Y O A M A T E U R R A D I O C L U B No. 3 Scalaã§å®è£ ãããã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ ç¡ç·é¨éçºç å·ååä¹ 2024å¹´8æ15æ¥ nextzlog.dev ç¡ç·é¨ â 2 â éçºç ç®æ¬¡ 第 1 ç« åæ©çãªæ©æ¢°å¦ç¿ã¢ãã« 3 1.1 ç·åå帰 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 åç´ãã¤ãºåé¡å¨ . . . . . . . . . . . . . . . . . . . . . .
çµäºã®ãããã ããã° anopara 㯠2022å¹´12æ29æ¥ ããã«ééãã¾ããã å çã®æ¬¡åä½ã«ãæå¾ ãã ããã 次ã®ããã°ã¯å¤ååãURLã§åéãã¾ãã 詳ãããã¨ã決ã¾ã£ãããã¡ãã«æ¸ãã¾ã â https://twitter.com/anoparanominal åµä½é¢é£ã®æ´»åã¯ãã¡ã â https://y9ks.jp çµµã¨ã â https://twitter.com/yuri9000series
ã¨ããããã§ãéãã§æ®ããããã«çµæ¸ææ¨ãä¸ãããä¸ããããæ¨æ¸¬ãã人工ç¥è½ãä½ãããã¨æãã¾ãã æéã§ãã¨ãæ¸ãã¦ãå²ã«ã¯åç½®ããé·ãã®ã§ããã試ãããæ¹ã¯ããµã³ãã«ãåãããã®ã¨ããããèªãã§ãã ããã TensorFlowã«ã¤ã㦠ãã°ããTensorFlowã使ã£ã¦ãã¾ããããçµå±ãµã³ãã«ãã¡ãã£ã¨æ¹å¤ããããã°ã©ã 以ä¸ã®ãã®ã¯ä½ãã¾ããã§ããããªãã¨ããããã¤ã³ã¿ãã§ã¼ã¹ãä½ã¬ãã«ããã¦ã¢ãã«æ§ç¯ä¸ã¤ããã®ãããã©ãã§ããç§ã¯äººå·¥ç¥è½ã®ç 究ããããã®ã§ã¯ãªããåã«äººå·¥ç¥è½ã®å¿ç¨ãããããã¨ããã ããªã®ã§ãããã¡ãã£ã¨é«ç´ãªAPIãå ·ä½çã«ã¯ã¬ã¤ã¤ã¼1ãConvolutionã§ã¬ã¤ã¤ã¼2ãPoolingã§â¦ã¨ããã®ãæå®ãã¦ããç¨åº¦ã®ç°¡ä¾¿ãã§ä½¿ããããã§ãTensorFlowã¯ããããAPIã¯ç¨æãã¦ãããªãã ããã¡ãã£ã¨æéãçµã¦ã°ããããTensorFlowç¨ã®ã©ãããåºæ¥
DL4Jãããªããªä½¿ã£ã¦ã人ã¯æ¥æ¬ã«ãã¾ãå± ãªãï¼ãããªæ°ããã¦ããã®ã§ã1ãæå¼±ãããè²ã 使ã£ã¦ã¿ãæ触ãªã©ãè¿°ã¹ã¦ã¿ãã DeepLearning4Jã£ã¦ãªãã å ¬å¼ãµã¤ãã¨ãGitHubè¦ã¦ããã以ä¸DL4Jã¨è¨è¼ã ä½ãåºæ¥ããã æè¿ã®æ©æ¢°å¦ç¿ç³»ã®å¤§ä½ã®äºã¯åºæ¥ããããªæ°ããããRNNï¼LSTM. GRUã¯å®è£ ä¸ï¼ãWord2VecãFeedFowardãCNNãRBMï¼Deep Belief Netsï¼ãAutoEncorderãªã©ã ä»ã®ã©ã¤ãã©ãªã¨ä½ãéããã åä»ãè¨èªï¼JVMè¨èªï¼ã§çµãããä»ã®æ©æ¢°å¦ç¿ã©ã¤ãã©ãªã¯C++ã¨ãç¹ã«Pythonãå¤ããC++ã¯åç´ã«æ¸ãã®ãããã©ããPythonãæªãã¯ç¡ãã®ã ãã©ãç§ã«ã¨ã£ã¦ã¯ãã¯ãScalaã®æ¹ã使ããããï¼ä½¿ãæ £ãã¦ãï¼ã®ã§ã§ããã°Scalaã§çµã¿ããããã¨ãã³ã³ãã¤ã«ãããè¨èªãªã®ã§æ°å¤è¨ç®ä»¥å¤ã®é¨åã¯JVMã®æ¹ãP
Vector and ListBuffer have similar performance for random reads. Benchmarking showed no significant difference in throughput, average time, or sample times between reading randomly from a Vector versus a ListBuffer. Vectors are generally faster than Lists for random access due to Vectors being implemented as arrays under the hood.Read less
OpenAIã®Whisperæåèµ·ãã25MBå¶éã解決ããPHP, Laravel, ffmpegã使ã£ããã¡ã¤ã«åå²ã®ä¾ OpenAIã®APIã使ã£ãé³å£°ã®æåèµ·ããã¯ãä»ãå¤ãã®ã¢ããªã±ã¼ã·ã§ã³ã§å©ç¨ããã¦ãã¾ãããã®è¨äºã§ã¯ãç¹ã«Whisperæåèµ·ããã®25MBå¶éã«ç¦ç¹ãå½ã¦ãPHP, Laravel, ffmpegâ¦
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}