Playgroundpplx-apiTry PerplexityLLM served by Perplexity LabsHello! How can I help you?CopyCopy0.00 secClear Chat
è´ä¸ãè¡ãçç±ã¨ãã¦ã¯ãåã©ããå«ã«ããã¦åãã§ã»ããããç活費ãå¦è²»ã«ä½¿ç¨ãã¦ãããããããå°æ¥ã®ç¸ç¶ç¨ãç¯ç¨ãããããªã©ãæ§ã ãªãã®ãæãããã¾ããç¸ç¶ç¨ã®ç³å義åããã人ã«ããã¦ãç¸ç¶ç¨ã®ç¨çãè´ä¸ç¨ã®ç¨çããé«ãå ´åãè´ä¸ããããã¨ã§ç¯ç¨ããããã¨ãå¯è½ã¨ãªãã¾ããããã§ä»åã¯ç¸ç¶ç¨ã®ç¯ç¨ã«ç¦ç¹ãå½ã¦ãç¨ç士æ³äººãã©ã¤ãç¸ç¶ã»ä»£è¡¨ç¤¾å¡ç¨ç士ã®æ¸ï¨è²´ä¹æ°ããããããã解説ãã¦ããã¾ãã ãè´ä¸ãã«å¿ è¦ãªæç¶ãã¯ãã?æ°ãã¤ããã¹ããã¨ã¯â¦ããã人ã»ããã人ããäºãã«è´ä¸ãèªèããåæãã¦ããå ´åã«ããã¦ãè´ä¸ãã¨èªãããã¾ãããäºããèªèããã¦ããã°æç«ãã¦ããã¨èãããã¦ããããå¥ç´æ¸ãæ¸ã義åãªã©ã¯ãªããç¹å¥ãªå½¢å¼ã¯å¿ è¦ããã¾ããã ã¾ããåãåã£ãå´ã¯è²¡ç£ãèªç±ã«ç®¡çã»æ¯é ã§ããå¿ è¦ãããã¾ãããã®ããä¸æ¹çã«åæã«æ¸¡ããããç¸æã使ããã¨ãã§ããªãå½¢ã§ãã£ããããå ´åãè´ä¸ã¨
Waterfront buildings in Austin. Photographer: Sergio Flores/Bloomberg ç±³ãã¥ã¼ã¨ã¼ã¯ã§å¹´å65ä¸ãã«ï¼ç´9100ä¸åï¼ã®äººããããµã¹å·ãªã¼ã¹ãã£ã³ã«ç§»ä½ããã¨ãå¹´é25ä¸ãã«ï¼ç´3500ä¸åï¼ä½ãç¯ç´ã§ãããã¨ããéèæ å ±ãæä¾ããã¹ãã¼ãã¢ã»ããã®æ°ããªèª¿æ»ã§ç¤ºããããç¨éãç活費ãå®ããªããã¨ãçç±ã ã¨ããã å社ã¯ãã¥ã¼ã¨ã¼ã¯ããµã³ãã©ã³ã·ã¹ã³ãã·ã«ã´ã®ï¼é½å¸ã«ä½ã給æãï¼æ¡ã®äººããªã¼ã¹ãã£ã³ã«ç§»ä½ããå ´åãè²»ç¨ãã©ããããç¯ç´ã§ãããåæããããªã¼ã¹ãã£ã³ã¯ããæ°å¹´ã大éã®ç§»ä½è ãå¼ãã¤ãã¦ãããä»åã®çµæã¯ãé«æå¾è ããããªãå·ãã¤ã¢ãã«è»¢å± ããå ´åã«ã©ã®ç¨åº¦ç¯ç´ã§ããã®ãã«é¢ãã¦å社ãæè¿å ¬è¡¨ãã調æ»ã¨åæ§ã ã£ãã NYãããã¤ã¢ãã«ç§»ä½ã§å¹´2800ä¸åè¿ãç¯ç´å¯è½ï¼å¹´å9000ä¸åãªã ãããããããµã¹ã®æ¹
ã¦ã¼ã¶ã¼ã®ç«å ´ã§ã¯AIãã¤ãã£ããªåãæ¹ã身è¿ã«è¿«ã£ã¦ããããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããMLã¨ã³ã¸ãã¢ã«ã¨ã£ã¦ã¯GPTãæ´»ç¨ããéçºãæèããå¿ è¦ãåºã¦ããä¸ããã¤ã¯ãã½ããã®åãçµã¿ãMLéçºã®ãã©ãã¤ã ã·ããããç´¹ä»ãããChatGPTã«ãã£ã¦æãããæªæ¥ã¨AIéçºã®å¤é·ããããã§æ¥æ¬ãã¤ã¯ãã½ããæ ªå¼ä¼ç¤¾ã®è²çæ°ãç»å£ãç¶ãã¦ãMLéçºã«ããã¦ãâå¦ç¿ããããã®ããã«æ¯ãèãããâããã®ã¢ã¤ãã¢ãç´¹ä»ãã¾ããååã¯ãã¡ãããã ããã¾ã§ã®MLéçºã¯ãå¦ç¿ãé¨åã®å·¥å¤«ãèã ã£ãè²çå¼é·æ°ï¼æ®ã20åã«ãªãã¾ããããã¡ãã£ã¨ããããã¯éããGPTéçºã«ã¤ãã¦ã§ãããMLéçºã®ä»ã¾ã§ãããGPTã¯ããããAzureã®èª¬æã¯ããã£ãããã¨ãã話ã«ãªããã§ãããå®éã«ã©ãä½ãã°ããã®ãç¥ã£ã¦ãããªãã¨ãªããªãå³ããã¨ãããããã®ã§ãããã®èª¬æããããã¨æãã¾ãã ããããå ã¯ãã£ããå°éçãªå 容ã
æãææãæ¼éã¯å æ°ããªãã¦ãå¤æ¹ã«ãªã£ã¦ããã¨ãå¤ã«é£²ã¿ã«åºãããããªãã å¤ã ãããããä»ããã¡ãã£ã¨é£²ã¾ãªãï¼ãã¨ã®èªãã¯ãæ¡å¤å¬ãããã®ã ã ä»åã¯ãæµæ¯å¯¿ã»åºå°¾ã®ãã¼ãã«ã´ã£ãããªãæ´ç·´ãããåºããç´¹ä»ã æ´è½ã¦ããããã©æ°è»½ã«èªããã使ãåæã®ãã人æ°åºã°ããã ã ãæ¸è°·ãã¼ãã§æ°è»½ã«èªãããããããªåºã ãæ¸è°·ã§é£²ãã§å¸°ããªãï¼ãæ°è»½ã«ãã¼ãã«èªãããã»ã³ã¹ã®ãã人æ°åº4é¸
THE NORTH FACEï¼ã¶ã»ãã¼ã¹ã»ãã§ã¤ã¹ï¼ããæ°çºå£²ãããï½¢MODULE UMBRELLAï¼ã¢ã¸ã¥ã¼ã«ã¢ã³ãã¬ã©ï¼ï½£ ã¯ãèªåã§ä¿®çå¯è½ãªæ°ããæ§é ã®æãããã¿åã ã æ¬ä½ã¯ã·ã£ããã»éª¨ã»çå°ã«å解ãããã¨ãã§ããå¥å£²ãã®ä¿®çãã¼ããè³¼å ¥ãããã¨ã§ãå£ãããã¼ãã ããåãæ¿ãã¦ãç¹°ãè¿ã使ãç¶ãããã¨ãã§ããã ããã¾ã§ä½¿ã£ã¦ããåã¯ã骨ãã¼ããæãããã¨ããã£ããã«è²·ãæããã¨ãããã¨ãå¤ãã£ãã ããããããèããã¨æãã¦ãã¾ã£ãã®ã¯è¤æ°æ¬ãããã¡ã®ããã1æ¬ã ãã®1æ¬ã ããåãæ¿ãããã¾ã 使ãç¶ããããã®ã«ãæ¬ä½ãã¨æ¨ã¦ã¦è²·ãæ¿ãã¦ãã¾ãã¨ããã®ã¯ãçµæ¸çã«ããããã¦è³æºã®è¦³ç¹ã§ãããã¾ãã«ããã£ãããªããã¨ã ã ãã®åã¯ããããªå½ããåã®ããã«è¡ã£ã¦ããç¿æ £ãåãæ¿ãã¦ãçæ´»ã«æ°ããã¹ã¿ã³ãã¼ããä½ã£ã¦ãããã¢ã¤ãã ã¨ãªã£ã¦ããã æ´é¨å ¼ç¨ã ããæ¯æ¥ä½¿ãã
CONTACT 製åã®ãè³¼å ¥ãæ¸ç±ãã»ããã¼ã CGWORLDã«é¢ãããåãåããã¯ãã¡ã è³¼å ¥è åãã½ããã¦ã§ã¢ãµãã¼ã ã«é¢ãããåãåããã¯ãã¡ã å人æ å ±ã«é¢ãã ãåãåããã¯ãã¡ã ãã¼ã³ãã¸ã¿ã«ã¸ã®ãåãåããã¯ä¸è¨ã®å種ãåãåãããã©ã¼ã ãããé¡ããããã¾ããç¶æ³ã«ãã£ã¦ã¯ããè¿äºã«ãæéãããã ããã¨ããããã¾ãã
tl;dr 2023/7/19 ã«å ¬éããã Llama 2 ã試ãã¦ã¿ãã text-generation-webui ã®ä¸ã§ Llama 2 ããã¼ã«ã«ç°å¢ï¼M2 Macï¼ã§åãããã é éã㦠GPU ãã»ããã¨ãªã£ãã âGoogle Colab çããå§ãããã çµæçã«å®ç¨çã§ã¯ãªãã£ãããã©ãéä¸éç¨ã¯åèã«ãªãããã ã Llama 2 ã¨ã¯ Meta ã®å¤§è¦æ¨¡è¨èªã¢ãã«ãç¡æã§å©ç¨å¯è½ã§ãåç¨å©ç¨ãå¯ããã©ã¡ã¼ã¿æ°ã¯ 7Bã13Bã70Bãå ¬éãã¼ã¿ã»ããããå¦ç¿ããã¦ãããå人ãã¼ã¿ã¯å«ã¾ãã¦ãã¾ããã Llama 2-Chat 㯠Llama 2 ããã¼ã¹ã« RLHF ãæ½ããã¢ãã«ãæ¢åã®ãªã¼ãã³ã½ã¼ã¹ã®ã¢ãã«ãä¸åãæ§è½ã示ããä¸é¨ã®ææ¨ã§ã¯ã¯ãã¼ãºããªã¢ãã«ã¨å¹æµããæ§è½ã text-generation-webui ã¨ã¯ ãã©ã¦ã¶ã§ä½¿ããæç« çæ AI ç¨ã® U
Note: the performance scores shown in the table below have been updated to account for the new methodology introduced in November 2023, which added new benchmarks. More details in this post. Demo You can easily try the 13B Llama 2 Model in this Space or in the playground embedded below: To learn more about how this demo works, read on below about how to run inference on Llama 2 models. Inference I
ï¼ï¼Llama 2ã®æ¥æ¬èªè½åæåã«ãLlama 2ã«æ¥æ¬èªã§è©±ãããã¦ã¿ã¾ããã å ¥åãããã«ã¡ã¯ãæ¥æ¬èªã¯è©±ãã¾ããï¼ LLama 2ãKonnichiwa! Yes, I can speak Japanese. How may I assist you today? ï¼ããã«ã¡ã¯ãã¯ããæ¥æ¬èªã話ãã¾ããä»æ¥ã¯ã©ã®ãããªãç¨ä»¶ã§ããããï¼ï¼ å ¥åãå¯å£«å±±ã¯ã©ããªå±±ã§ããï¼ Llama 2ãFuji-san is a very famous mountain in Japan, known for its beautiful and iconic shape. It is a stratovolcano, which means it is a type of volcano that is characterized by its steep, conical shape and i
Most data source types have a data freshness option (the exception to this is extracted data sources). This option lets you balance your need for up-to-date information against report performance and potential query costs or quotas. Each type of data source has its own default data freshness threshold, but you can adjust this threshold as needed. For example, if you are measuring ad performance on
If you have any I/O-bound needs (such as requesting data from a network, accessing a database, or reading and writing to a file system), you'll want to utilize asynchronous programming. You could also have CPU-bound code, such as performing an expensive calculation, which is also a good scenario for writing async code. C# has a language-level asynchronous programming model, which allows for easily
Async operations are common in modern web applications. Fetching data from an API, loading large components, or running computational tasks are all examples of asynchronous code that take some time to complete. In React, rendering components asynchronously can improve perceived performance by allowing certain parts of the UI to render immediately, while other parts wait on async operations. React
Reactã®æ°æ©è½ãTime Slicingãã¨ãSuspenseããFacebookãç´¹ä»ãéåæã¬ã³ããªã³ã°ãæ´»ç¨ãUXããµã¯ãµã¯ã«åä¸ Reactã®ææ°ãã¼ã¸ã§ã³ã§ãããReact 16ã以éã«äºå®ããã¦ããæ°æ©è½ã¯ãReactã®æ°ã³ã¢ã¢ã¼ããã¯ãã£ã¨ãã¦React 16ããæ¡ç¨ãããFiberã«ãã£ã¦å®ç¾ãããéåæã¬ã³ããªã³ã°ãªã©ãæ´»ç¨ãCPUè½åãä½ãããã¤ã¹ããããã¯ã¼ã¯å¸¯åãååã§ãªãç°å¢ã§ããµã¯ãµã¯åå¿ããã¢ããªã±ã¼ã·ã§ã³ãéçºã§ãããã®ã«ãªãã¨ãFacebookã®Reactéçºãã¼ã ã«å¨ç±ããSophie Alpertæ°ãReactããã°ã«æ稿ããè¨äºãSneak Peek: Beyond React 16 - React Blogãã§ç´¹ä»ããã¦ãã¾ãã ãã®æ°æ©è½ããTime Slicingãã¨ãSuspenseãã§ãã ãã¦ã¹ããã¼ãã¼ããªã©ã®æä½ããããã¯ãããªã
Reactã¯ã©ã¡ããã¨ããã¨éåæå¦çãè¦æãªé¨é¡ã§ãããä»ã¾ã§ã¯Reduxã®middlewareãé§ä½¿ããããHooksãä¸æã使ã£ãããã¦ä¹ãåã£ã¦ãã¾ããã ããã§ä»¥åããSuspenseã¨ããæ©è½ã®å®è£ ãé²ãã§ãã¾ããSuspenseã¯ã¾ã ä¸éã«æµ¸éããã£ã¦ããªãæ©è½ã§ãããReactã®ä¸çã大ããå¤ããå¯è½æ§ãããã¾ãããããªSuspenseã«ã¤ãã¦ã軽ãè¦ãã¦ã¿ã¾ãããã Suspenseã®ä¸ç Reactã§éåæå¦çã綺éºã«æ±ãã®ã¯ç°¡åãªãã¨ã§ã¯ããã¾ãããredux-sagaã使ãã«ãããuseEffectã使ãã«ããã大ããªçã¿ãä¼´ãã¾ãã ããããReactã¯ã¢ããªã±ã¼ã·ã§ã³ã®UI層ãæ å½ããã©ã¤ããªã©ãªã§ããæ¬æ¥æããã¹ã責åã«æ³¨åã§ããéåæå¦çã®ãããªäºäºã«æ°ãåãããããããã¨ãéåæå¦çãReactã¢ããªã±ã¼ã·ã§ã³ã®è¨è¨ã«å¤§ããªå½±é¿åãæã¡å§ããã¨ããã®ã¯ãæ
ãã¹ã¦ã® Microsoft 製å Global Microsoft 365 Teams Copilot Windows Surface Xbox ã»ã¼ã« æ³äººåã ãµãã¼ã ã½ããã¦ã§ã¢ Windows ã¢ã㪠AI OneDrive Outlook Skype OneNote Microsoft Teams PC ã¨ããã¤ã¹ Xbox ãè³¼å ¥ãã ã¢ã¯ã»ãµãª VR & è¤åç¾å® ã¨ã³ã¿ã¡ Xbox Game Pass Ultimate Xbox ã¨ã²ã¼ã PC ã²ã¼ã Windows ã²ã¼ã æ ç»ã¨ãã¬ãçªçµ æ³äººåã Microsoft Cloud Microsoft Security Azure Dynamics 365 ä¸è¬æ³äººåã Microsoft 365 Microsoft Industry Microsoft Power Platform Windows 365 éçºè
The open-source AI models you can fine-tune, distill and deploy anywhere. Choose from our collection of models: Llama 3.1, Llama 3.2, Llama 3.3.
Metaâs LLaMa 2 license is not Open Source OSI is pleased to see that Meta is lowering barriers for access to powerful AI systems. Unfortunately, the tech giant has created the misunderstanding that LLaMa 2 is âopen sourceâ â it is not. Even assuming the term can be validly applied to a large language model comprising several resources of different kinds, Meta is confusing âopen sourceâ with âresou
ã¡ã³ããã³ã¹
ãç¥ãã
é害
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}