Cholesky å解ãã¼ã æ¡ç° ç¥å² 2008 å¹´ 6 æ 9 æ¥ æ¸ãããã§ããã â¢ ä¿®æ£ Cholesky å解ã®ã³ã¼ã ⢠帯è¡åã®å ´åã®ã³ã¼ã ⢠Sylvester ã®æ £æ§å¾ã®ãã¡ãã¨ãã説æ ãªã©ã¯æ¸ãã¦ãããããããããæåã®ãã¡ã¯ä¸ä¸è§å å L ãæ±ããããã«æ¸ãã¦ããããã å®éã«ã¯ä¸ä¸è§å å U ãæ±ããããã«ãã¦ããããã°ã©ã ãå¤ãã®ã§ããã£ãã®ãã¨ãæå ãã U ãæ±ãããããªèª¬æã«ãã¦ããã®ãè¯ããããããªãã 1 åº åºãæå³ã® ã³ã¬ã¹ãã¼, ãã¬ã¹ãã¼ Cholesky å解ã¨ã¯ã対称è¡åã«ç¹åãã LU å解ã§ããã ãã®ææ¸ã§ã¯è¡åã¯å®è¡åã§ããã¨ããããè¤ç´ è¡åã®ç¯å²ã§èãããã¨ãå¯è½ã§ãã (転 ç½®ã®ä»£ãã« Hermite å ±å½¹ãå®å¯¾ç§°ã®ä»£ãã« Hermite ã¨ããããã§ãã)ã æ£åè¡åã® LU å解ã¯ç·åè¨ç®ã«ããã¦éè¦ãªåºæ¬æä½ã§ãã
é£ç«æ¹ç¨å¼ã解ãããã«ä¸å®å ¨ï¼¬ï¼µå解åå¦çã¤ãåå ±å½¹å¾é æ³ ã«ã¤ãã¦åå¼·ãã¦ãã¾ãã åå¦çã®éã«ãè¡åAãä¸å®å ¨ï¼¬ï¼µå解ããã®éè¡å(LU)^(-1)ã¨ããã®ã使ç¨ãã¾ããLUå解ã¾ã§ã¯ã§ããã®ã§ããããã®éè¡åã¯æ®éã«ï¼¬ï¼µå解ï¼ç´æ¥æ³ã¨ããå½¢ã§ãã¨ããã®ã§ãããããã ã¨ããããç´æ¥æ³ãã¤ãã£ã¦ãã¦ãã¾ãé«éåãæå¾ ã§ããªãæ§ãªæ°ããã¾ããã ä¸å®å ¨ã³ã¬ã¹ãã¼å解ã¤ãå ±å½¹å¾é æ³(ICCG)ã®ã¨ãã¯ãä¸å®å ¨ã³ã¬ã¹ãã¼å解å¾ãéæ¥çã«Aã®éè¡åããã¨ãã¦ä½¿ç¨ããæ¹æ³ãããã¾ããã®ã§ãªã«ãããæ¹æ³ãããã®ãã¨æã質åãã¾ããã ã¯ããã¦ã®ããã°ã©ãã³ã°ã§è¦å½éããªãã¨ããã£ã¦ããããããã¾ããããããããããããã¾ãã
ç·åæ¹ç¨å¼ã®äºæ¬¡å½¢å¼ãæå°åããããã®ãæé©ãªã¹ããããµã¤ãºã«ããææ¥éä¸æ³ï¼ç·ï¼ã®åæã¨å ±å½¹å¾é æ³ï¼èµ¤ï¼ã®åæã®æ¯è¼ãå ±å½¹å¾é æ³ã¯ãå³å¯ã«ã¯n次ã®ä¿æ°è¡åã«å¯¾ãã¦é«ã nã¹ãããã§åæããï¼ããã§ã¯n=2ï¼ã å ±å½¹å¾é æ³ï¼ãããããããã°ãã»ããè±: conjugate gradient methodãCGæ³ã¨ãå¼ã°ããï¼ã¯å¯¾ç§°æ£å®å¤è¡åãä¿æ°ã¨ããé£ç«ä¸æ¬¡æ¹ç¨å¼ã解ãããã®ã¢ã«ã´ãªãºã ã§ãã[1][2][3][4]ãå復æ³ã¨ãã¦å©ç¨ãã[1][2][3][4]ãã³ã¬ã¹ãã¼å解ã®ãããªç´æ¥æ³ã§ã¯å¤§ãããã¦åãæ±ããªãã大è¦æ¨¡ãªçè¡åã解ãããã«å©ç¨ãããããã®ãããªåé¡ã¯åå¾®åæ¹ç¨å¼ãªã©ãæ°å¤çã«è§£ãéã«å¸¸ã«ç¾ãã[1][5][6][7]ã å ±å½¹å¾é æ³ã¯ãã¨ãã«ã®ã¼æå°åãªã©ã®æé©ååé¡ã解ãããã«ç¨ãããã¨ãã§ãã[8][9][10]ã åå ±å½¹å¾é æ³ï¼è±èªçï¼ã¯ãå ±å½¹å¾é æ³ã®é対称åé¡ã¸
æ¦è¦ CGæ³(Conjugate Gradient Methods)ã¯M.R.Hestenesã¨E.Stiefelã«ãã£ã¦1952å¹´ã«ææ¡ãããæ¹æ³ã§ãã[1]ã CGæ³ã¯æ£å®å¤å¯¾ç§°è¡åã«å¯¾ãã¦ä½¿ãããé£ç«ä¸æ¬¡æ¹ç¨å¼ãå復æ³ã§è§£ãããã®ææ³ã§ããã è¡åã®æ£å¤å¯¾ç§°æ§ ãã¯ãã«ã®å ç©ãã®ããã«æ¸ãã å®è¡åãæ£å®å¤å¯¾ç§°ã¨ã¯ã ã¨ãããã¨ã§ãããã対称ã§ããã¨ãããã¨ã¯ã ãæãç«ã¤ã¨ãããã¨ã§ããã CGæ³ã®åºæ¬åç ä»ã次ã®ãããªç·å½¢å次æ¹ç¨å¼ã解ãã¨ããã CGæ³ã¯åç®ã®å復ã«ããã¦ã次ã®ããã«ãã®æ¹ç¨å¼ã®è§£ã誤差ãç¨ãã¦å®ç¾©ããã誤差ã®ãã«ã (çå·æç«ã¯ã®ã¨ã) ãæå°åãããããªè¿ä¼¼è§£ãé¨å空éã®ä¸ããè¦ã¤ããæ¹æ³ã§ãããä½ããã¯ã¯ãªããé¨å空é(Krylov Subspace)ã§ããã ã¤ã¾ãCGæ³ã¯æ¬¡ã®ãããªé£ç«ä¸æ¬¡æ¹ç¨å¼ã®è¿ä¼¼è§£ãæ¢ãããã®æ¹æ³ã§ããã ãã®ããã«é¨å空éã®ä¸
åå¦çã¤ãCGæ³(PCGæ³) åç¯ã§ã¯CGæ³ã®åæãè¡åã®åºæå¤åå¸ã«å¼·ãä¾åãããã¨ãåãã£ãã ããã§ã解ãã¹ãæ¹ç¨å¼ãè¡åã使ã£ã¦æ¬¡ã®ããã«å¤å½¢ã§ããã¨ããã ä½ããããã§ãããããã§ãã¯ç¹ç°ã§ãªãè¡åã§ããã ãæ£å®å¤å¯¾ç§°ã®å ´åããæ£å®å¤å¯¾ç§°ã¨ãªããããã§é£ç«ä¸æ¬¡æ¹ç¨å¼ã«CGæ³ãé©å¿ãããã¨ãèããã ããããããããæ¡ä»¶æ°ãå°ãããããªããåºæå¤ã®åå¸ããã¦ããã¨ããã¨ãããæ©ã解ãæ±ãããã¨ãã§ãããã¨ãåããã ããã§è¡åã¨ããã以ä¸ãè¡åãããç¨ãããã¨ãªããã®éè¡åã®ã¿ãç¨ãã¦ãé£ç«ä¸æ¬¡æ¹ç¨å¼ã«CGæ³ãé©å¿ãã¦ããã®ã¨åä¸ã«ãªãããã«CGæ³ã®ã¢ã«ã´ãªãºã ãæ¸ãç´ãã ã®æãã¨ãªããå¤å½¢ããé£ç«ä¸æ¬¡æ¹ç¨å¼ã¯è§£ããã¨ã解ãæ±ããããã é£ç«ä¸æ¬¡æ¹ç¨å¼ã«CGæ³ããéã®æ®å·®ãæ¢ç´¢æ¹åãã¯ãã«ã¨ããã ãã£ã¦ããã¨ããã¨ãCGæ³ã®ä¿æ°ã¯æ¬¡ã®ããã«è¡¨ããã¨ãã§ããã CGæ³ã®é¢ä¿å¼ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}