ãã¤ã®éã«ã Ubuntuã12.04 㨠CUDA 4.2 ãæ£å¼ãªãªã¼ã¹ããã¦ããã®ã§ãã¤ã³ã¹ãã¼ã«ãã¾ããã ã¤ã³ã¹ãã¼ã«ã¯ä»¥ä¸ã®é åºã§è¡ãã¾ãã Ubuntu 12.04 NVIDIA製ãã£ã¹ãã¬ã¤ãã©ã¤ã CUDA Toolkit 4.2 GPU Computing SDK 4.2 ãµã³ãã«ããã°ã©ã ã®ã³ã³ãã¤ã«ã«å¿ è¦ãªã©ã¤ãã©ãªç GPU Computing SDK ã¯ã¤ã³ã¹ãã¼ã«å¾ã«ä¿®æ£ããå¿ è¦ãããã¾ããCUDA Toolkit ã 4.1 ã§ã¯ä¿®æ£ãå¿ è¦ã§ããï¼Ubuntu 12.04ã«CUDA 4.1ãã¤ã³ã¹ãã¼ã«ããæã®ã¡ã¢ - irieããï¼ãã4.2 ã§ã¯ãã®ã¾ã¾ã§OKã§ãã Ubuntu 12.04 ã¤ã³ã¹ãã¼ã«æ¹æ³ã¯ãããããªã¨ããã«æ¸ããã¦ããã®ã§ãããã§ã¯çç¥ãã¾ãã使ç¨ããPCã Core i7 CPU + ã¡ã¤ã³ã¡ã¢ãªã¼ 16GiB ã¨ãããã¨ã§ã64
ãé£è¼ç§»ç±ã®ãç¥ããã DOS/V POWER REPORTã¯2024å¹´å¬å·ããã£ã¦ä¼åãã¾ããã以ä¸ã®é£è¼ã¯æ²è¼ã®å ´ãAKIBA PC Hotline!ï¼https://akiba-pc.watch.impress.co.jp/ï¼ã«ç§»ãã¦ç¶ç¶ä¸ã§ãããããã£ãããã¯ã¼ã¢ããããå 容ã«ããæå¾ ãã ããã ï¼æ°è£ é£è¼ä¸ï¼(2024å¹´7æç¾å¨)ï¼ GPU Round-Robin Benchmark https://akiba-pc.watch.impress.co.jp/backno/special/gpu_benchmark/ VIDEO CARD LABORATORY https://akiba-pc.watch.impress.co.jp/backno/special/videocard_lab/ ææ°èªä½è¨ç»ï¼â»ç«¹å 亮ä»ã®ãªã¬ã«PCã±ã¼ã¹ã使ãããï¼ã¨åä½µï¼ https://akiba
PSVitaã®ã¡ã¢ãªã¼ã«ã¼ããã¨ããã·ã«ã¡ã©.comã§è²·ã£ã被害è ãæ¢ãã¦ã¿ãã (風ã®å¹ãã¾ã¾ãæ°ã®åãã¾ã¾ã«ãï½ blow with the wind ï½) PS Vitaã®çºå£²æ¥ã§ããããã¨ã«ï¼ (çãèãã¢ãã¡ããã°) IMAXãã¸ã¿ã«ã·ã¢ã¿ã¼ã¨ã¯ä½ã ã£ãã®ãï¼ã¦ãã¤ãããã»ã·ããè±æ´²ã«æ¥æ¬æ大ç´3Dã¹ã¯ãªã¼ã³ããªã¼ã·ã£ã³ã¹ã¯ãªã¼ã³ããèªçï¼ (ï¼®æ°ã®æ ç»é¤¨ï¼ä¸å®ææ¥è¨) ããã¬ã¼å·çæ¸ç±ç´¹ä»ã3Dä¸çè¦æ ¼ãä½ãï¼ (äºåå±ã ãã) ãçµæ¸ç£æ¥ã ãï¼Dä¸çè¦æ ¼ãä½ãï¼ã (ç¥æ§ã¯ãã®è¾ºãã¦ãã¦ããã¦ãã¾ãã) åçç¹æã»æå¹è±ç©èªãï¼ (ã¤ãæã®èªæ¸æ¥è¨by大ææ¸ å¸) PSP go ã®ææ°æ å ±ã«ã¤ã㦠(æ°åPSPâ è³¼å ¥ã¬ã¤ã è² PSP-3000 ã¯ã³ã»ã° TVåºå èã èå) Apple iPod touch 第3ä¸ä»£ 32GB MC008J/A ææ°ã¢ãã« ï½ (ã¢ãã¾ã³
次ä¸ä»£GPUã¢ã¼ããã¯ãã£ãFermiãã®å é¨æ§é ã«è¿«ãï¼NVIDIA GPU Technology Conferenceï¼2/2 ãã¼ã¸ï¼ 512åã®CUDAã³ã¢ã§çéæ¼ç®ãå¯è½ã«ãªã£ã¦ããFermi NVIDIAãå ¬éããFermiã®å é¨æ§é ã«ããã¨ãFermiã«ã¯ãCUDAã³ã¢ãã¨å¼ã°ããããã»ããµã³ã¢ã512åãå èµããã¦ããããã®è¨å¤§ãªæ°ã®CUDAã³ã¢ãå©ç¨ãã¦ãã¯ãã«æ¼ç®ãªã©ã§å¤ç¨ããã並åæ¼ç®ãããªãã¦ãããFermiã§ã¯ã32åã®CUDAã³ã¢ã1ã¤ã®åä½ã¨ãã¦ãSMï¼Streaming Multiprocessorï¼ã¨å¼ã°ããæ¼ç®ã¦ããããæ§æãããFermiã§ã¯SMã16åç¨æããããã¨ã«ãªãã ããã°ã©ã ããéããã¦ããæ¼ç®å½ä»¤ã¯ããGigaThreadãã¨å¼ã°ããã¹ã±ã¸ã¥ã¼ã©ãå©ç¨ãã¦ãã¹ã±ã¸ã¥ã¼ãªã³ã°ããã¦åSMã«éããããåSMã§ã¯ãGT200ã®1ã¤ãã2ã¤ã¨åã«
GeForce GT 640 (1024MB GDDR5) NE5T6400HD06-2081F [PCIExp 1GB] ä¾¡æ ¼æ¯è¼ ãã¼ã > ãã½ã³ã³ > ã°ã©ãã£ãã¯ãã¼ãã»ãããªã«ã¼ã > Palit Microsystems(ããªãã ãã¤ã¯ãã·ã¹ãã ) > GeForce GT 640 (1024MB GDDR5) NE5T6400HD06-2081F [PCIExp 1GB] Palit Microsystems 2013å¹´ 6æ 5æ¥ ç»é² GeForce GT 640 (1024MB GDDR5) NE5T6400HD06-2081F [PCIExp 1GB] ãæ°ã«å ¥ãç»é² 10 æå®ãç¥ããã¡ã¼ã«ãåãåãã¾ã ä¾¡æ ¼æ å ±ã®ç»é²ãããã¾ãã ä¾¡æ ¼æ¨ç§»ã°ã©ã ãæ°ã«å ¥ã製åã«ç»é²ããã¨ãä¾¡æ ¼ãæ²è¼ãããæã«ã¡ã¼ã«ãMyãã¼ã¸ã§ãç¥ãããããã¾ã ä¾¡æ ¼å¸¯ï¼Â¥âï½Â¥â (âåº
ã¨ãã£ã¦ãGeForce GTX TITANã§ãGTX 780ã§ããªãããã¡ãããã«é«ãTesla K20ã§ããªãã GeForce GT 640ã§ããã GTX 690ãGTX 770ãã対å¿ãã¦ããªãCC3.5ã«ãªããGT 640ã対å¿ãã¦ãã®ã§ããã ãã ãGT 640ãªãå ¨é¨å¯¾å¿ãã¦ãããã§ã¯ãªãã æ°ã³ã¢æè¼åã ãã§ããã ä½ãèããã«è²·ã£ããCC3.5é対å¿ã®ãã®ãæ´ãå¯è½æ§ãé«ãã ä»åã¯è²·ã£ãã®ã¯Palitã®NE5T6400HD06-2081Fã ãã¹ãã©ã§7,950åã ã£ãã åºæ¿ã®ãµã¤ãºèªä½ã¯ãã¼ãã対å¿ã ãã©ããã¼ãããã©ã±ãããä»å±ãã¦ãªãã®ã§æ³¨æã ä¸è¬çãªã³ãã¯ã¿é ç½®ãªã®ã§ä»ã®ã°ã©ãã®ãã¼ãããã©ã±ãããæµç¨ã§ããããã ä»åã¯WinFast GT520 1024MBã®ãã¼ãããã©ã±ãããæµç¨ããã ä¸ã¯WinFast GT520 1024MBã ã«ã¼ãé·ã¯åã
NVIDIA CUDA 5ãçºè¡¨ãä¸çã§æãæ®åãã¦ãã並åã³ã³ãã¥ã¼ãã£ã³ã°ã»ãã©ãããã©ã¼ã ã«ãããããã°ã©ãã³ã°ãããã«å®¹æã«ãªã ç¡åãã¦ã³ãã¼ãå¯è½ãªææ°ãã¼ã¸ã§ã³ã«ã¯ã éçºçç£æ§ãé«ããæ°ãããã¼ã«ãã©ã¤ãã©ãªã¼ãæ©è½æºè¼ 2012å¹´10æ15æ¥ - ã«ãªãã©ã«ãã¢å·ãµã³ã¿ã¯ã©ã© ï¼ NVIDIAï¼æ¬ç¤¾ï¼ç±³å½ã«ãªãã©ã«ãã¢å·ãµã³ã¿ã¯ã©ã©ã社é·å ¼CEOï¼ ã¸ã§ã³ã¹ã³ã»ãã¢ã³(Jen-Hsun Huang)ãNasdaqï¼NVDAï¼ã¯æ¬æ¥ãNVIDIA® CUDA® 5ã®ãããã¯ã·ã§ã³ã»ãªãªã¼ã¹ãçºè¡¨ãã¾ãããGPUãæ´»ç¨ãã¦ç§å¦ã¢ããªã±ã¼ã·ã§ã³ãå·¥å¦ã¢ããªã±ã¼ã·ã§ã³ãé«éåãã並åã³ã³ãã¥ã¼ãã£ã³ã°ã®ãã©ãããã©ã¼ã ããã³ããã°ã©ãã³ã°ã¢ãã«ã¨ãã¦ãä¸çã§æãæ®åãã¦ããCUDAã®ãã¯ãã«ãªææ°ãã¼ã¸ã§ã³ã§ããNVIDIA Developer Zoneã¦ã§ããµã¤ãããç¡åãã¦ã³
CUDA C++ Programming Guide The programming guide to the CUDA model and interface. Changes from Version 12.5 Added sections Atomic accesses & synchronization primitives and Memcpy()/Memset() Behavior With Unified Memory. Added section Encoding a Tensor Map on Device. 1. Introductionï 1.1. The Benefits of Using GPUsï The Graphics Processing Unit (GPU)1 provides much higher instruction throughput and
Developing a Linux Kernel Module using GPUDirect RDMA The API reference guide for enabling GPUDirect RDMA connections to NVIDIA GPUs. 1. Overviewï GPUDirect RDMA is a technology introduced in Kepler-class GPUs and CUDA 5.0 that enables a direct path for data exchange between the GPU and a third-party peer device using standard features of PCI Express. Examples of third-party devices are: network i
æ¦è¦ è¿å¹´ãGPUã®æ§è½ã¯é£èºçã«åä¸ãã¦ãããã°ã©ãã£ãã¯å°ç¨ã®å¦çè£ ç½®ã¨ãã¦ã§ã¯ãªããæ°å¤è¨ç®çã®æ±ç¨åãã®å¦çã«å©ç¨ãããGPGPUã«é¢ããç 究ãçãã«è¡ããã¦ãããGPUã¯å é¨ã«å¤ãã®ã³ã¢ãåãã¦ãããNVIDIA社ã®GeForce GTX 580ã§ã¯ã512åãã®ã³ã¢ãä¿æãã¦ããããããã®ã³ã¢ãã¹ã¦ãå¹çããå©ç¨ãããã¨ã§ãGPUã®æã£ã¦ããé«ãããã©ã¼ãã³ã¹ãå¼ãåºããã¨ãåºæ¥ãããGPUã®é«ã並åæ§ãå©ç¨ããããã«ã¯GPUç¹æã®å¦çãå®è£ ããå¿ è¦ããããGPUããã°ã©ãã³ã°ã«ãªãã¿ã®ç¡ãå©ç¨è ã«ã¨ã£ã¦ã¯å¦çã®è¨è¿°ãå°é£ã§ããã ããã§ãGPUã大éã®ã³ã¢ãæã£ãããã»ããµã ã¨èãããããã«å¯¾ãã¦MapReduceãé©ç¨ãããã¨ãæ¤è¨ããã親ãã¿ãããMapReduceã¤ã³ã¿ã¼ãã§ã¼ã¹ã«ãã¦ã¯ãã¦å¦çãè¨è¿°ããã ãã§ãGPUã®é«ã並åæ§ãçãããããã°ã©ã ãå®è£ å¯è½ã¨ãªããå
ä»åã¯ããµã³ãã«ã½ã¼ã¹ã 64bit çã®Win32 ã³ã³ã½ã¼ã«ã¢ããªã±ã¼ã·ã§ã³ã¨ãã¦ãã«ããã¦ã¿ãã åèã«ããããã¥ã¡ã³ãã¯ãâATI Stream SDK OpenCL⢠Programming Guide (v1.0) [PDF 900 KB]â ãã®ãã¡ã¤ã«ã«ã¯ã以ä¸ã®æé 㧠ãã©ãã¤ããã ãã¹ã¿ã¼ããã¡ãã¥ã¼ããããã¹ã¦ã®ããã°ã©ã ãï¼ãATI Stream SDK v2ãï¼ãATI Stream SDK Documentationããé¸æããã¨ããã©ã¦ã¶ã§ããATI Stream SDK v2.01 Documentationãã®ãã¼ã¸ãéããéãããã¼ã¸ã®ãªã¹ãä¸ã«ä¸è¨ãã¡ã¤ã«ãããã Visual C++ 2008 Express Edition ãèµ·åããã ããã¡ã¤ã«ãã¡ãã¥ã¼ãããæ°è¦ä½æãï¼ãããã¸ã§ã¯ãããé¸æã ãããã¸ã§ã¯ãã®ç¨®é¡ããããWin32ããé¸æ
å æ¥ãããªã«ã¼ããè²·ãã¾ãããGPUã«AMD Radeon HD5670ãç©ãã ãã«ããã£ã¹ãã¬ã¤å¯¾å¿ã§ãããã¥ã¢ã«éããã¾ã¾ã³ã¼ããæ¸ãã¦éå®ãã¦ãã¾ããåã¯3Dããããã®ã²ã¼ã ãããªãããã°ã©ãã£ã¯ã¹ã«ã¯çãçµµå¿çç¡ãªã®ã§ã°ã©ãã£ã¯ã¹ãå¤ç¨ããã¢ããªã±ã¼ã·ã§ã³ãæ¸ãã¾ããï¼DirectXãªããé¢ç½ãããªãã§ããã©ãï¼ããªã®ã§æ®æ®µã¯ãã£ããã®GPUãã¢ã¯ããã¦ã¾ããHD5670ã«ã¯ããã°ã©ããã«ã·ã§ã¼ãã¼ãããã¯å°ããªCPUã400åºãè©°ãè¾¼ã¾ãã¦ãããããã®ã§ããããªãã¨ãMOTTAINAIã ãããæã¦ä½ãã¦ãããããã®GPUã«ä»äºãããããã¨ãOpenCLã§éãã§ã¿ã¾ãããæ¬ç¨¿ã§ã¯OpenCL C++ Bindingã«ãããã³ãã«ããéåã®è¨ç®ã試ã¿ã¾ãã OpenCL GPUã®è¨ç®æ§è½ã¯å½ç¶ã®ãã¨ãªããã°ã©ãã£ã¯ã¹è¨ç®ï¼ãã®ã»ã¨ãã©ããã¯ãã«ã¨è¡åæ¼ç®ï¼ã«ä½¿ããã¦ããã®ã§ãããã
Ck:è¦ç´ æ°kã®é »åºã¢ã¤ãã éåã®åè£ã®éå Lk:è¦ç´ æ°kã®é »åºã¢ã¤ãã éåã®éå minsupã¯æå°ãµãã¼ããæºããããã«å¿ è¦ãªãã©ã³ã¶ã¯ã·ã§ã³æ° ã ï¼ãæå°ãµãã¼ãã«ãã©ã³ã¶ã¯ã·ã§ã³ã®ç·æ°|D|ãä¹ããå¤ã ãã©ã³ã¶ã¯ã·ã§ã³ãåè£ã¢ã¤ãã éåãé »åºã¢ã¤ãã éåä¸ã®ã¢ã¤ãã ã¯ã ãã¹ã¦ãã決ã¾ã£ãé åºã«ã½ã¼ãããã¦ããã C1ããL1ãçæ ã¢ã¤ãã éåC1 D â ã¹ãã£ã³ ã¢ã¤ãã éåL1ã«ã¦ã³ã åè£ â çæ ï½Aï½ï½Aï½2 ï½Bï½ï½Bï½3 ï½Cï½ï½Cï½3 ï½Dï½ï½Eï½3 ï½Eï½ C2ããL2ãçæ ã¢ã¤ãã éåC2 D â ã¹ãã£ã³ ã¢ã¤ãã éåL2ã«ã¦ã³ã åè£ â çæ ï½A,Bï½ï½A,Cï½2 ï½A,Cï½ï½B,Cï½2 ï½A,Eï½ï½B,Eï½3 ï½B,Cï½ï½C,Eï½2 ï½B,Eï½ ï½C,Eï½ C3ããL3ãçæ ã¢ã¤ãã éåC3 D â ã¹ãã£ã³ ã¢ã¤ãã éåL3ã«ã¦ã³ã
ã¢ã½ã·ã¨ã¼ã·ã§ã³åæ(associations analysis)ã¯ãç¾è²¨åºãåºèãªã©ã§éãã¦ãã表1ã®ãããªãã©ã³ã¶ã¯ã·ã§ã³ãã¼ã¿ãæ´»ç¨ããããã«ããã¹ã±ããã®ä¸ã®ååéã®é¢é£æ§ã«ã¤ãã¦åæãè¡ãæ¹æ³ã§ãããã¢ã½ã·ã¨ã¼ã·ã§ã³åæã¯ã表1ã«ç¤ºããããªããã©ã³ã¶ã¯ã·ã§ã³ãã¼ã¿ãããé »åºããã¢ã¤ãã ã®çµã¿åããã®è¦åãæ¼ããªãæ½åºãããã®ä¸ããèå³æ·±ãçµæãæ¢ãåºããã¨ã主ãªç®çã¨ããã ã¢ã½ã·ã¨ã¼ã·ã§ã³åæã¯ã1990年代åãã«è±å½ã®æåç¾è²¨åºãã¼ã¯ã¹ï¼ã¹ãã³ãµã¼ã®åºèã§éãã¦ãããã¼ã¿ã®æ´»ç¨ã«é¢ãã¦ç¸è«ãåãããã¨ããã£ããã¨ãã¦ãIBMç 究æãç 究ãå§ããApriori(ã¢ããªãªãª)ã¨ããã¢ã«ã´ãªãºã ãéçºããã¨è¨ããã¦ãããAprioriã¢ã«ã´ãªãºã ã¯ã巨大ãªãã¼ã¿ãã¼ã¹ããã¢ã½ã·ã¨ã¼ã·ã§ã³ã«ã¼ã«(associations rules)ãæ½åºãããã¨ãå®ç¾ãããã¼ã¿ãã¤ã³ãã³ã°ã®å®ç¨
追è¨: 以ä¸ã®å 容ã¯æ¢ã«å¤ãã OpenCLã®ãµãã¼ãç¶æ³ã¯å½æããã ãã¶åä¸ãã¦ããã¨è¨ããã http://wiki.monaos.org/index.php?.mjt/mosh/OpenCL OpenCLå®è£ ã¯1.0å®è£ ã¨1.1å®è£ ãæ··å¨ãã¦ããã®ãç¾ç¶ã¨è¨ãããä»ã®ã¨ãããOpenCLã¯å®å ¨ãªã¯ãã¹ãã©ãããã©ã¼ã ãå®ç¾ã§ããç¶æ³ã§ã¯ãªãã(ç¾ç¶ã®OpenGLã®ããã«)ããã©ã¼ãã³ã¹ã追æ±ãããªããã³ãåºæã®ã³ã¼ããããã¤ã追å ããå¿ è¦ãããã ããã 試ããªã MacOS XãªãAppleã®å®è£ ä¸æã(MacçCUDA toolkitã¯OpenCLãæã£ã¦ããªã) nVidiaã®CUDA対å¿GPUãæã£ã¦ãããªãCUDA toolkitãååã¯CUDA toolkitã ãOpenCLããµãã¼ããã¦ãããæ©è½è±å¯ãCUDA toolkitã¯GPUä¸ã§ããå®è¡ã§ããªãã®ã§ãå¿ è¦ã«å¿ãã¦
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}