注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
1 はじめに 近時、LLMを利用し、社内外の文書データを用いた精度の高いチャットボットを構築するために... 1 はじめに 近時、LLMを利用し、社内外の文書データを用いた精度の高いチャットボットを構築するために、RAG(Retrieval Augmented Generation)という手法が注目されています。 LLMをそのまま利用してチャットボットの構築を行うと、通常、LLMが学習したときのデータに含まれている内容以外に関する質問には回答ができないか、あるいは正しくない回答を返してしまいます。 この問題を解決する手法として注目されているのがRAGです。 この手法は、あらかじめ社内外の文書データをデータベース(DB)として準備しておき、ユーザからの質問がなされた場合には、当該質問と関連性が高い文書データを検索し、その文章データを質問文に付加してLLMに入力することで、精度が高い、かつ実際の文書データに紐付いた回答を生成することができるというものです。 ここで、プロンプトに入力するためにDBとして
2023/08/05 リンク