ãµã¤ã³ã¤ã³ããç¶æ ã§ããããããæ¼ãã¨ããã¤ãã¼ã¸ã® ããããå±¥æ´ãã«ä¸è¦§ã¨ãã¦ä¿åããã¦ããã®ã§ã å度èªã¿ãããªã£ãæãããã¨ã§ãã£ããèªã¿ããã¨ãã«ä¾¿å©ã§ãã
大ä¼æ¥ã¾ãã¯æè¡ã®å 端ä¼æ¥ã ããå¿ è¦ã¨ããå©ç¨ããæè¡ã¨æãããã¡ãªäººå·¥ç¥è½ï¼AIï¼ãã ãæ¢ã«ãå人農家ã§ãæ´»ç¨ããã¯ããã¦ãããGoogle Cloudãã¼ã ã®ãããããã¼ã¢ããã±ã¤ãã§ããä½è¤ä¸æ²æ°ãTREND EXPO TOKYO 2017ã«ç»å£ãAIï¼äººå·¥ç¥è½ï¼ã®æ´»ç¨äºä¾ããå社ãµã¼ãã¹ã軸ã«ãã¦èªã£ãã ããã人éã«è¿ãè³¢ããæã£ãITãä½ã£ã¦ãããã¨ããã®ãAIã§ãã ä½è¤æ°ã¯è¬æ¼ã®åé ã§ãã話ããã ãããã¦è³¢ãITãä½ãããã®ã¢ããã¼ãã®ã²ã¨ã¤ããæ©æ¢°å¦ç¿ã§ããç¾å¨ã¯99ï¼ ã®ITã·ã¹ãã ãã人ãããã°ã©ã ãæ¸ãã¦ã³ã³ãã¥ã¼ã¿ã¼ã®å¦çã®ä»æ¹ã決ãã¦ãã¾ããä¸æ¹ã®æ©æ¢°å¦ç¿ã¯ãã³ã³ãã¥ã¼ã¿ã¼ãèªãããã°ã©ãã³ã°ãè¡ããã¨ãããã¾ããä¾ãã°ãeã³ãã¼ã¹ã®ãã¼ã¿ãè¦ãã¦ããã¨ãããããã客æ§ã¯ååãè²·ããããããããã¯è²·ãã«ããã¨ãããã¨ããã³ã³ãã¥ã¼ã¿ã¼ã«æ¢ããããã¨ãã§ããã®ã§ã
ã追è¨ã2/19å ¨è¬åº§ä¿®äºãã¾ããï¼ https://www.deeplearning.ai/ Andrew Ngå çã®ãã£ã¼ãã©ã¼ãã³ã°å°éè¬åº§ deeplearning.ai ãåè¬ããã¡ã¢ãä¹ ã ã®Courseraï¼ Neural Networks and Deep Learning Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization Structuring Machine Learning Projects Convolutional Neural Networks Sequence Models Courseraã®ä¸ã§ããã®è¬ç¾©ã¯ Specialization ã¨ããæ çµã¿ã§ãåºæ¬ææï¼æ$49.00ï¼è¬ç¾©ãããªãè¦è´ããã ãã§èª²é¡ãªãCertificateãªã
深層å¦ç¿ã¯ãéå»æ°å¹´éã«äººå·¥ç¥è½Â (AI) ã«é©å½ãããããã¾ãããä¸é¨ã®ä¸ä½ã®ä¼æ¥ã ãã§ã¯ãªã誰ã§ãèªç±ã«äººå·¥ç¥è½ã使ããããã«ãã¨ãããã¤ã¯ãã½ããã®ãã¸ã§ã³ã«åºã¥ãããªã¼ãã³ã½ã¼ã¹ã®æ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ã§ããMicrosoft Cognitive Toolkit (CNTK) ãä½æããã¾ãããä»æ¥ã§ã¯ãGitHubã¹ã¿ã¼ã®æ°ã§ TensorFlowã¨Caffeã«ç¶ããããã¦MxNetãTheanoãTorchãªã©ãããé ä½ãé«ãã3çªç®ã«äººæ°ã®ãã深層å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ã¨ãªãã¾ããã TensorFlowã®äººæ°ãé«ããã¨ãèããã¨ãTensorFlowã®ä»£ããã«CNTKã使ç¨ããçç±ã¯ãªã«ãªã®ãã¨ãããã¨ãããèããã¾ãã人éã¯å¤§å¢ããã£ã¦ãããã¨ã«å¾ãå¾åãããããããããã¨èªä½ã¯ééãã§ã¯ããã¾ããããããããã®è¨äºã§ã¯ãCNTKã«æå©ãªããã¤ãã®å¼·åãªçç±ãææãããã¨æã
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ãã®é¨åã¯éè¦ãé«ãã¨æã£ãã®ã§ã以ä¸ã®èªåã®æ稿ããæç²ã TensorFlowã®ãã¥ã¼ããªã¢ã«ãéãã¦ã人工ç¥è½ã®åçã«ã¤ãã¦å¦ç¿ãã http://qiita.com/jintaka1989/items/3b70b5c5541620536fa2 以ä¸ã®ãã¨ã«ã¤ãã¦ç¥ããã人åãã®è¨äºã ã»åæ©æ¢°å¦ç¿ã©ã¤ãã©ãªã®æ¯è¼ ã¡ãªã¿ã«ç§ã¯TensorFlowãã触ã£ã¦ããªãã®ã§ã ãã®è¨äºã¯ããã°ãªã©ãæ¢ç´¢ãã¦ããããã¾ã¨ãããã®ã§ããã 追è¨ï¼å®éã«ã©ã¤ãã©ãªããããã使ã£ã¦ã¿ã人ã®ææ³ã¯ãã¡ã https://speakerdeck.c
Recurrent Neural Networksã¨ã¯ä½ã RNNã®å¿ç¨äºä¾ æ©æ¢°ç¿»è¨³ é³å£°èªè ç»åã®æ¦è¦çæ 説ææããã®ç»åçæ ç¥ã£ã¦ããã¨ä¾¿å©ãªRNNã®ç¨®é¡ã¨é²å Simple RNN LSTM GRU Bi-directional RNN Attention RNN Quasi-Recurrent Neural Network TensorFlowã«ããRNNã®å®è£ ã¾ã¨ã åèæç® äººéã¯ãç®ã®åã§èµ·ããåºæ¥äºããã次ã«èµ·ãããããªåºæ¥äºãäºæ¸¬ããªããæèãèªãã§å¤æãä¸ããã¨ãã§ãã¾ããä¾ãã°ãè»ãé転ãã¦ããéã«æ©è¡è ãé£ã³åºãããã ã¨æãã°ãååãªééãç½®ãã¦èµ°è¡ãããã¨ãåºæ¥ãã§ãããã ã¾ããç¾å®ä¸çã¯æéã®å¶ç´ãåããäºè±¡ã¯ããããããã¾ããã¢ãã¡ã¼ã·ã§ã³ãªã©ã®ã¹ãã¼ãªã¼ã§ã¯ãååã®æèãåæã¨ãã¦æ¬¡ã®å±éãé²ãã§ããã¾ãã Recurrent Neural Ne
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}