ã·ã¼ã¤ã¼ã·ã¼ã¯PFIã¨ãæ©æ¢°å¦ç¿ãå©ç¨ããããã°ãã¼ã¿ã®æ´»ç¨åéã§åæ¥ããã¨çºè¡¨ã第1å¼¾ã¨ãã¦ããã¨ã¿ã®ãæ©æ¢°å¦ç¿ãå©ç¨ãããã¼ã¿åæã·ã¹ãã ã試è¡å°å ¥ãæ¯æ´ãã稼åãéå§ããã ã·ã¼ã¤ã¼ã·ã¼ã¯2015å¹´11æ19æ¥ãPreferred Infrastructureï¼PFIï¼ã¨ãæ©æ¢°å¦ç¿ãå©ç¨ããããã°ãã¼ã¿ã®æ´»ç¨åéã§åæ¥ããã¨çºè¡¨ããããã®ç¬¬1å¼¾ã¨ãã¦ããã¨ã¿èªåè»ã®ãæ©æ¢°å¦ç¿ãå©ç¨ãããã¼ã¿åæã·ã¹ãã ãã®è©¦è¡å°å ¥ãæ¯æ´ãã稼åãéå§ããã ã·ã¼ã¤ã¼ã·ã¼ã¯ãç¬èªã®è£½åããµã¼ãã¹ãæ´»ç¨ããICTã®åã§ã製é æ¥ã®ãé©æ°çãªã¢ãã¥ããããæ¯æ´ãã¦ãããä¸æ¹ãPFIã¯ãæ¤ç´¢ã»ã¬ã³ã¡ã³ãæè¡ãæ©æ¢°å¦ç¿ãèªç¶è¨èªå¦çãåæ£å¦çæè¡ãªã©ã®ç 究éçºã«åãçµãã§ããã ä»åã両社ã®ç¹é·ãçããããã¨ã¿åãã«ãæ©æ¢°å¦ç¿ãå©ç¨ãããã¼ã¿åæã·ã¹ãã ããæä¾ãåã·ã¹ãã ã¯ã顧客ã®æè¦ãå°ããã¨ãæ½åºã»åæã
deep learning ã¨ã¯ãå¾æ¥ãããå¤ãã®å±¤ãæã£ããã¥ã¼ã©ã«ããããç¨ãã æ©æ¢°å¦ç¿æè¡ã§ãã deep learning ã¯ãç»åèªèãé³å£°èªèãªã©ã®åéã§ã ãããããªãã³ããã¼ã¯ã§å¾æ¥æè¡ãè¶ ããæ§è½ãåºãã¦ããã 注ç®ãéãã¦ãã¾ãã ç§èªèº«ãåå¼·ä¸è¶³ã§ãã åè¶ãªããã deep learning é¢é£ç¨èªã«ã¤ãã¦èªåã®ç解ã§ç°¡åã«ã¾ã¨ãã¾ããã ï¼æãã¦ããåè«æãã¡ããã¨èªãã§ã¾ããï¼ ééããããã°ãã²ãææãã ãããï¼ Deep Learning auto-encoder ã¾ã㯠RBM ãªã©ãç©ã¿éããæ·±ãæ§é ãæã¤æ©æ¢°å¦ç¿å¨ã å¾æ¥ã¯ç 究è ãæä½ããã¦ããç¹å¾´æ½åºå¨ãã 代ããã«å¤§éã®ãã¼ã¿ããå¦ç¿ããèªå·±çµç¹åãããã¢ããã¼ãã¨ãè¨ããã deep learning ãç¹å¾´æ½åºå¨ã¨ãã¦ä½¿ãã èå¥å¨ã¨ãã¦ã¯æä¸ä½å±¤ã§ï¼³ï¼¶ï¼ãªã©ã使ããã¨ãããã deep
å®è·µ æ©æ¢°å¦ç¿ã·ã¹ãã ã®7ç« ã¨8ç« ãããããããã¨ã«è¿ãã£ãã®ã§ãã¶ã¯ã¶ã¯ã£ã¨ã¾ã¨ãã¾ãããï¼æ°å¼ã¨ã³ã¼ãã«ã¯ä¸å触ãããæ¦è¦ã ãï¼ ã¢ã½ã·ã¨ã¼ã·ã§ã³ã»ã«ã¼ã«ã»ãã¤ãã³ã°ããã¬ã¤ã«ã¾ã¨ã¾ã£ãè³æããã£ãã®ã§æ¸ãã¾ããã§ãããï¼ä¸çªä¸ã®åèã®ã¨ããï¼ ã¢ã³ãµã³ãã«å¦ç¿ï¼Ensemble learningï¼ åã ã«å¦ç¿ããè¤æ°ã®å¦ç¿å¨ãèåããã¦æ±åè½åï¼æªå¦ç¿ãã¼ã¿ã«å¯¾ããäºæ¸¬è½åï¼ãåä¸ãããä¸ã¤ã®å¦ç¿å¨ãä½æãããã¨ãã¢ã³ãµã³ãã«å¦ç¿ã¨å¼ã°ãã¾ãã ç¹å¾´ã¨ãã¦ãåå¦ç¿å¨ãæ°ããç¹å¾´éã¨ãã¦èãããã¨ãã§ããè¨ç·´ãã¼ã¿ãåºã«ãã®æ°ããçµã¿åããæ¹ãå¦ç¿ããã 諺ã®ï¼äººå¯ãã°ææ®ã®ç¥æµãªæãã§ããå¦ç¿å¨ã®åæ°ãå¢å ãããã¨ã«ããèå¥è½åãåä¸ãã¦è¡ããã¢ã³ãµã³ãã«å¦ç¿ã¯ãé«ãèå¥è½åã«å ãåç´æ§ï¼å¦ç¿å¨ãè¤æ°åç¨æããã ãï¼ã¨ æ±ç¨æ§ï¼ä»»æã®å¦ç¿å¨ã«é©ç¨å¯è½ï¼ã¨ããå©ç¹ãããã ãã®ããã«ã¯
ã¢ã³ãµã³ãã«å¦ç¿ (ensemble learning)â ã©ã³ãã ã«è§£ãåºåããäºæ¸¬å¨ï¼ããªãã¡ï¼äºæ¸¬ç²¾åº¦ãææªã®äºæ¸¬å¨ããã¯ï¼é«ã精度ã§äºæ¸¬ã§ããå¼±å¦ç¿å¨ (weak learner)ãçµã¿åããã¦é«ç²¾åº¦ã®å¦ç¿å¨ãæ§æããæ¹æ³ï¼ ãã®ã³ã°ããã¼ã¹ãã£ã³ã°ã¨ãã£ãææ³ãèåï¼ åæã®ç 究ã§ã¯ã¯ã©ã¹åé¡ã ãã ã£ããï¼å帰ãã¯ã©ã¹ã¿ãªã³ã°ã«ãé©ç¨ããã¦ããï¼ â æç®1ã§ã®ãã¤ã¢ã¹-ããªã¢ã³ã¹ã®è¦³ç¹ããã®è°è«ï¼â ã¾ãï¼ã¯ã©ã¹åé¡ã«ãããä¸åæ§ã¨ãã¤ã¢ã¹-ããªã¢ã³ã¹ã次ã®ããã«å®ç¾©*1ï¼ è¨ç·´éå \(T\) ããå¦ç¿ããåé¡å¨ \(C(X;T)\) ã®ï¼å ¥åºå対 \(X,Y\) ã®åå¸ã«å¯¾ãã誤差㯠\[PE(C(X;T))=\Pr_{X,Y}[C(X;T)\ne Y]\] å ¥åã«å¯¾ããçã®ã¯ã©ã¹æ¡ä»¶ä»ãåå¸ \(\Pr[Y|X]\) ãç¨ããæé©ãªãã¤ãºåé¡å¨ã \(C^\ast(X)\
éå£å¦ç¿(ensemble learning)ã¯ã決ãã¦ç²¾åº¦ãé«ããªãè¤æ°ã®çµæãçµ±åã»çµã¿åããããã¨ã§ç²¾åº¦ãåä¸ãããæ©æ¢°å¦ç¿æ¹æ³ã§ãããè¤æ°ã®çµæã®çµ±åã»çµã¿åããã®æ¹æ³ã¨ãã¦ã¯ãåé¡åé¡ã§ã¯å¤æ°æ±ºãæ°å¤ã®äºæ¸¬(å帰)åé¡ã§ã¯å¹³åãå¤ãç¨ãããã¦ããã éå£å¦ç¿ã§ã¯ãç°ãªãéã¿ããããã¯ç°ãªããµã³ãã«ããåç´ãªã¢ãã«ãè¤æ°ä½æããããããä½ããã®æ¹æ³ã§çµã¿åããããã¨ã§ã精度ã¨æ±ååã両ç«ããã¢ãã«ãæ§ç¯ããã æ¬ç¨¿ã§ã¯ãéå£å¦ç¿æ¹æ³ã«ãããå帰ã»åé¡ã®ã¢ã«ã´ãªãºã ãã®ã³ã°(bagging)ããã¼ã¹ãã£ã³ã°(boosting)ãã©ã³ãã 森(random forest)ã®åºæ¬æ¦å¿µããã³ãããã®Rã®ããã±ã¼ã¸ã¨é¢æ°ãç´¹ä»ããã æ©æ¢°å¦ç¿ã®åé¡ã§ã¯ãå¦ç¿ã«ãã£ã¦å帰ã»åé¡ãè¡ãã·ã¹ãã ãå¦ç¿æ©æ¢°ã¨å¼ã¶ãæç®ã«ãã£ã¦ã¯å¦ç¿æ©æ¢°ã仮説(hypothesis)ãåé¡å¨ã»èå¥å¨(classi
2015å¹´12æ05æ¥08:00 ãã®ãã±ã¦ãå²ä¸æé«ããã Tweet 1: 以ä¸ãï¼¼(^o^)ï¼ã§VIPããéããã¾ã 2015/12/03(æ¨) 22:41:54.272 ID:qw1KwOaE0.net 転è¼å ï¼ http://viper.2ch.sc/test/read.cgi/news4vip/1449150114/ ããããã¨ç¬ãããã±ã¦ï¼boketeï¼ç»å http://blog.livedoor.jp/nwknews/archives/4651673.html 人åã§ã®é²è¦§æ³¨æãªç¬ãããã±ã¦ï¼boketeï¼ç»å http://blog.livedoor.jp/nwknews/archives/4644760.html ç¬ããæ¢ã¾ããªããã±ã¦ï¼boketeï¼ç»åè²¼ã£ã¦ãã http://blog.livedoor.jp/nwknews/archives/4631483.ht
JR山æç·ã«åä¸å¹´ã¶ãã«æå ¥ãããæ°åè»ä¸¡ï¼¥ï¼ï¼ï¼ç³»ã§ãã©ãã«ãç¸æ¬¡ãã åé¡ã§ãåå ã®ä¸ã¤ã¯ãæ°è»ä¸¡ã®åèµ°è¡ã«ééãã¡ã³ããè©°ãæãã¦å®è»ã§ã®èµ°è¡è©¦é¨æã大ããè¶ ããéãããããããã¬ã¼ããå¶å¾¡ããæ°ã·ã¹ãã ã«ä¸å ·åãçããããã¨åãã£ããå±±æç·ã®ä¹è»çã¯ã©ãã·ã¥æã¯ï¼ï¼ï¼ï¼ ãè¶ ããããJRæ±æ¥æ¬ã¯å®è»è©¦é¨ãã座å¸ã«ä½è£ãããç¨åº¦ã®ï¼ï¼ï¼ ã¾ã§ããè¡ãããã³ã³ãã¥ã¼ã¿ã¼ã§ã®ã·ãã¥ã¬ã¼ã·ã§ã³ãéä¿¡ãããè¦åãçºè»ããç½ãããããï¼çå·åï¼ãä¸åæ¥åå¾ä¸æããã大å´é§ ã§ã®åèµ°è¡ã®ã»ã¬ã¢ãã¼ãçµãã¦èµ°ãåºããï¼¥ï¼ï¼ï¼ç³»ã¯ãç´äºåå¾ãäºã¤é£ã®ç®é»é§ ã§åæ¢ä½ç½®ãäºåäºã»ã³ãè¡ãããã¦æ¢ã¾ã£ãããã¼ã ãã¢ã¨åè»ãã¢ãä¸åäºã»ã³ã以ä¸ãããã¨ãã¢ã¯éããªãä»çµã¿ã§ãåæ¢ä½ç½®ãä¿®æ£ãããããä¹å®¢ã®è·éãæ³å®å¤ã ã£ãããä¸æ¥ãJRæ±ã®æ å½è ã¯åå ã説æãããï¼¥ï¼ï¼ï¼ç³»ã§å°å ¥ãããæ°ã·ã¹ãã ãINTEROSï¼ã¤
æ ªå¼ä¼ç¤¾ã¦ã¼ãã¤ã ï¼è±: Juchheim Co., Ltd.ï¼ã¯ãå µåº«çç¥æ¸å¸ä¸å¤®åºæ¸¯å³¶ä¸çºã«æ¬ç¤¾ãç½®ãæ¥æ¬ã®è£½èä¼ç¤¾ã§ããã ãã¦ã ã¯ã¼ãã³ ç¥æ¸ããå ¨å½ç¾è²¨åºãªã©ã«å±éããæ´èåã¡ã¼ã«ã¼ã¨ãã¦ã¢ãã¾ãã¨åç§ããªãåå¨ã§ãããå¼åºç©ã¨ãã¦æ ¹å¼·ã人æ°ãèªããã¦ã ã¯ã¼ãã³ãã¯ãããã¯ããã¼ãã±ã¼ãé¡ã主åååã¨ãããæ¥æ¬èªã§ã®å¼ã³ããããèæ ®ãã¦ãã¦ã¼ãã¤ã ãã¨ãã¦ãããããJuchheimãã¨ããåèªãã«ã表è¨ããå ´åãã¦ãããã¤ã ãã¨ããã»ããåèªã®çºé³ã«ããè¿ãã ãã¦ã ã¯ã¼ãã³ãã¯ããã¼ãªã©ç¼ãèåã¯æç¥çå®åå¸ã®ä¸å¤®å·¥å ´ãªã©ã§ä¸æ¬è£½é ãããã鮮度ãæ±ããããã±ã¼ããªã©çèåãåçèåã¯è¹æ©ãç¥æ¸ãåå¤å±ã®åå·¥å ´ãå¶æ¥æä»å±ã®å°å·¥å ´ã§å°åºå¥ã«è£½é ããè¿è·é¢åºè·ããä½å¶ã¨ãªã£ã¦ãããååã¨ãã¦åå±æµéã¯è¡ãããç´å¶åºãç¾è²¨åºç´ç´ï¼å¤ãã¯ç´åã ãã§ãªãå°å¾è²©å£²å¡ãæ´¾é£ããï¼ã主軸ã¨ãã¦
太平æ´æ¦äºã®ç²ç¹ã¨ãã®æ¦ç¥ç解ç ï¼20040506ååºã20130905å çã20130909åå çã20130912ãåæã®ããã¡ã¼ã¿ã¼ã¨ãã¦ã®ãæ¦ç¥ç·ã®é·ãã®æ¯ãã追å ï¼ å®ã®ã¨ããä»ã¾ã§ç§ã¯ã太平æ´æ¦äºã«é¢ããã·ãã¥ã¬ã¼ã·ã§ã³ã¨ããã®ã¯ãããã»ã©çå£ã«ããã¤ããã¯ãªãã£ããã§ããã¨ãããã©ãããå æ¥ã¢ããããç¥çå¶æµ·æ¨©ã®ããã®ä½æ¦è¨ç»æ¡ãæ¯ãè¿ã£ã¦ã¿ãã¨ãããã©ãããã¿ã¼ã³é¢ã§å ±éãã¦ããé¨åãããªããã£ã¦ããããçµæ§é¦¬é¹¿ã«ãªããªããããã®ãã®ã§ããããããã¨ãããã£ã¦ãã¾ããããããªãã¨å®å ¨ã«ç¡è¦ãã¦ããã¨ããããã«ãããã¾ããã ããã«ã¾ãä¸è¬çãªåé¡ã¨ãã¦è¦ã¦ããã¨ã«ãã社ä¼å ¨ä½ã§ã太平æ´æ¦äºã¨ããã®ã¯ä½ãã©ããã£ã¦ãåã¤æ¹æ³ã¯ãªãã¨ããã®ãå®å ¨ã«å¸¸èã«åãã¦ãã¾ã£ã¦ãã¦ãå½å®¶æ¦ç¥ãèããå ´åã«ããã§æèåæ¢ã«é¥ã£ã¦ãã¾ããã¨ãå¤ãããã«æãã¾ãã ã¨ãããä¾ã®ç¥çå¶æµ·æ¨©ã®ã
ã¢ããã³ãã«ã¬ã³ãã¼5æ¥ç®ã®ã«ã¤ã§ããåºå¸çªå·ãã ããããã¤ã5çªãããã§ãã ã¿ã¤ãã«ã«ãããã¹ãã¼ãå½ï¼ãå¼ç¤¾ä»£è¡¨ã®å²©ä½ãè¬æ¼ãªã©ã§ç¹°ãè¿ãçºè¨ãã¦ãããã¬ã¼ãºã§ãããè¦æ¨¡ã®å°ããªã¹ã¿ã¼ãã¢ããã«ããã¦ãã¹ãã¼ãã¯é常ã«éè¦ãªæ¦å¨ã§ãããã¾ãã«ã¹ãã¼ãã大äºããã¦ãå æ¥è¡ãªããã社å ã®å ¨ä½ä¼è°ã§ã¯ãSpeed, speed, speed and speed!ãã¨ããã¹ãã¼ã¬ã³ã代表ããæ示ãããã»ã©ãCerevoã«ãããã¹ãã¼ãã®åå¨æã¯å¤§ããªãã®ã¨ãªã£ã¦ãã¾ãã ã¹ãã¼ããæããããã«ã¯ã¨ã³ã¸ãã¢ãªã³ã°ã®è¦ç´ ã大ããã§ãããå®ã¯æ®æ®µã®äºåä½æ¥ãã¹ãã¼ããé«ããããã«ã¯ã¨ã¦ã大äºãªåå¨ã§ãããã®ä¸ã§ãã»ã¼ãã¹ã¦ã®è·ç¨®ãå¿ ç¶çã«ä½¿ã£ã¦ããã¡ã¼ã«ã¯ãå¹çåãé²ããã¨ããã§æ¥å¸¸æ¥åã®ã¹ãã¼ããå¤§å¹ ã«é«ãããã¨ãã§ãã¾ãã Cerevoã§ã¯ã¨ã³ã¸ãã¢ãä¸å¿ã«åºå ±ãå¶æ¥ãçµçãæ¸å¤ãªã©å¤å½©ãªè·ç¨®
ã¯ã¦ãªããã¯ãã¼ã¯ã«ä¸ãã£ã¦ããè±èªè¨äºã®ã¬ãã«ã®ä½ããè¦ã¦ããã¨ããããã¦ã¼ã¶ã¼ãã¡ãããã«è±èªãã§ããªããããããããã å æ¥ã®ãã®è¨äºãªããã ã»åèªãè¦ãããã»ææ³ãè¦ãããã»çºé³ãè¦ããã ã ãã®å 容ã§1000ãã¯ãã ã常è»ãé¸ãã¦ãã¨ããæããªãããããªè¨äºã«é£ãããã¨ãããåãã©ãã ãè±èªã§ããªããã ãã ã¨ããããã§ãè±èªãå°éã®å®¶åºæ師ã®ç«å ´ããã æ¬å½ã«ä¸éããè±èªå¦ç¿ã®æ¹æ³ãä»ä¸åº¦ã¾ã¨ãã¦ãããã¨æãã ã¨ãã£ã¦ãçµè«ã¯ç°¡åã åé¨è±èªããã ããã«å°½ããã ãæ¥æ¬ã®åé¨è±èªã¯é§ç®ãã¨ããç¥è©±ã ãåé¨è±èªãã¨è¨ãã¨æ¡ä»¶åå°çã«ããï½ãã¨ããé¡ããã人ãå¤ãã ãæ¥æ¬ã®åé¨è±èªã£ã¦å ¨ç¶ãã¡ãªãã§ããï¼ã ã£ã¦ã6å¹´éãåå¼·ãã¦ãã®ã«ã¿ããªè±èªãã©ãã©ã«ãªã£ã¦ãªããããâ¦ã ãªã©ã¨ãã©ã£ãã§å¹ããã¾ããããããã¨ãè¨ã£ã¦ãã人ãããã ã©ããæ¥æ¬ã«ã¯ãåé¨è±èªã¯å½¹ã«ç«ããª
We are making Chocolate Cornets, Japanese cornet-shaped sweet buns filled with chocolate custard. The shape is very cute, isnât it? Of course, it is delicious! How to Make Chocolate Cornets https://cookingwithdog.com/recipe/chocolate-cornets/ (6 pieces) - Bread Dough - 150g Bread Flour (5.29 oz) 1 tbsp (Raw) Sugar ½ tsp Salt ½ tbsp Non-Fat Dry Milk Powder 1 tsp Instant Dry Yeast 1 tbsp Lukewarm
ãã©ã¤ãã³ä¸ã¤ã§ä½ããï¼ãæ¿åã«ã«ããã¼ã©ãã®ç°¡åã¬ã·ãâ¡ ä»åãç´¹ä»ããã®ã¯ããã©ã¤ãã³ä¸ã¤ã§ä½ãã¡ããç°¡åãªã«ã«ããã¼ã©ã®ã¬ã·ãã§ããæ´ãç©ãå°ãªããªãã®ã¯ãå©ããã¾ãããï¼ã·ã³ãã«ã§ç°¡åãªã¬ã·ããªã®ã§ãã±ã±ã£ã¨ä½ãã¾ããã©ã³ãããã©ã³ããªããã«ãªã¹ã¹ã¡ã§ãï¼ãã²ãä½ã£ã¦ã¿ã¦ä¸ããï¼ 2015å¹´9æ29æ¥ æ´æ°
ä»å¹´ãããã£ã¨åéãã¦ã¿ã¾ãã Q.åéè³æ ¼ã¯ï¼ A.ç¹ã«ãªãã§ããããå¼ã«ããã£ã¦ããã°çµµã§ãè¨äºã§ãããã°ã©ã ã§ãã©ãã¨ãã Q.ããããããã£ã¦ã©ãããä¼ç»ï¼ A. TOPãã¼ã¸ã®âWHAT'S ADVENTAR?âããå¼ç¨ âAdvent Calendarã¯æ¬æ¥ã12æ1æ¥ãã24æ¥ã¾ã§ã¯ãªã¹ãã¹ãå¾ ã¤ã¾ã§ã«1æ¥ã«1ã¤ãç©´ã空ããããããã«ãªã£ã¦ããã«ã¬ã³ãã¼ã§ããWebã§ã®Advent Calendarã¯ããã®é¢¨ç¿ã«ç¿ãã12æ1æ¥ãã25æ¥ã¾ã§1æ¥ã«1ã¤ãã¿ããªã§è¨äºãæ稿ãã¦ããã¨ããã¤ãã³ãã§ããâ Q.ã©ã®ã¿ã¤ãã³ã°ã§å ¬éãããããã®ï¼ A. ããæ°ãããã°æ¥ä»ãå¤ãã£ã¦ããã«ã§ããã§ããã°ãã®æ¥ã®ãã¡ã ã£ããããããªã¼ãããã§ããããã å»å¹´ã®ããå¼Advent Calendarã¯ãã¡ããåç §ãã ããã http://www.adventar.org/calendars
ããå¼ Advent Calendar 2015 äºæ¥ç®ã§ãã Yuyushiki Complete Collection ã«ã¤ã㦠åç±³åãã«å£²ããã¦ããBD ãªã¼ã¸ã§ã³åãããã°æ¥æ¬å½å ã§ãæ®éã«è¦ãã ä¸æã«å ¨è©±åé² å®ã($30ããã) åå¹ã¯æ¶ãã ã«ãã«ãå¼/ã³ã¡ã³ã¿ãªã¼ãªã ãã³ããããOP/EDã¯ãã ãªããSentai Filmworks ãªãæµ·å¤ã®ãã£ã¹ããªãã¥ã¼ã¿ãã¡ããã¨ã©ã¤ã»ã³ã¹ãè²·ã£ã¦æ£è¦ã«å£²ã£ã¦ããåã®ããã§ãæµ·è³çãªã©ã§ã¯ãªãã ç±³Amazonã§è²·ã£ããä»ã¯å½å Amazonã§ãè²·ãããã©ã£ã¡ãå®ããã¯çºæ¿ã¬ã¼ã次第ã ã¨æãã å®åºèã§è²·ããªãã¢ããã®ä¸å¤PCå±ã«è¡ãã¨ä½æ ãæµ·å¤çã®å ¨è©±åé²BDã®åæãããããè¯ãã®ã§ãã®è¾ºãã¨ã ä»æ¥ã®ãã¼ãï¼ç¿»è¨³ ããå¼ã®ä¼è©±ãå ¨ä½çã«ãã¤ã³ã³ãã¯ã¹ããªä¸ã«èªæãéè¦ãããããªç®æãå¤ãã®ã§ãã©ãèãã¦ãæ¥æ¬èªä»¥å¤ã¸ã®ç¿»è¨³
å ¨ä¸çã®ã²ã¼ã ã¡ãã£ã¢ãé¸ã¶ã²ã¼ã ã¢ã¯ã¼ããThe Game Awards 2015ãã§ãã³ã¼ã« ãªã ãã¥ã¼ã㣠ãã©ãã¯ãªãã¹IIIãHalo 5ï¼Guardiansãªã©ã®äººæ°ã²ã¼ã ãæ¼ãã®ãã¦ãBest Multiplayer awardããåè³ããã®ã任天å ã»Wii Uç¨ã²ã¼ã ã®ãSplatoon(ã¹ãã©ãã¥ã¼ã³)ãã§ãã2015å¹´11æ13æ¥åå10æããé ä¿¡ããã大åã¢ãããã¼ãã§ã¯æ°ãã«ã®ã¢ã40種é¡ã追å ãããã®ã§ããããæ°ã«å ¥ãã®ã®ã¢ãã¯ã¼ããããããã®ã¢å³é¸ããææã¡ã®ã®ã¢ã®ä¸ããæè¯ã®çµã¿åãããå°ãã ãã®ã«ã´ã£ãããªãµã¼ãã¹ãã¤ã«ã®ã¢ã±ã³ãµã¯ããç»å ´ãã¦ãããããªã使ãããã§ãã Splatoonï¼ã¹ãã©ãã¥ã¼ã³ï¼ https://www.nintendo.co.jp/wiiu/agmj/ ã¹ãã©ãã¥ã¼ã³ã«ã¯ãã¾ãã¾ãªãã¶ã¤ã³ã®ã®ã¢(è£ å)ãããã¾ãããåã®ã¢ã«ã¯ã¡
ãç¥ãã
é害
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}