ãã³ãã«ã¨ãã¼ãã«ã¨æ¸åãåºæ¥ãç°å¢ãããã°è¡ããããã°ã©ã ã§ãã ãã¬ã¼ãã³ã°é »åº¦ã¯é±1ã6åããé¸ã¹ã¾ãã®ã§ãããããã®ãé½åã«åãããé »åº¦ãé¸æãã¦ãã¬ã¼ãã³ã°ãè¡ã£ã¦ä¸ãããé±1ã2åã®å ´åã§ãããã¬ã¼ãã³ã°æé45ï½60åç¨åº¦ã§åºæ¥ãå 容ã§ã(ã¤ã³ã¿ã¼ãã«ãè©°ããã°30åã§çµããã¾ã)ã æ¬ããã°ã©ã ã«ããã¦ã ã¹ã¯ã¯ããâ¦ãã«ã¹ã¯ã¯ããï¼ãã¤ãã¼ããã¼ãã¼ã©ã¡ãã§ãå¯ï¼ ãã³ããã¬ã¹â¦ãã¼ãè¸ã¾ã§éãããã¦ã³ããããªãã»ãå°»ã¯ã¤ããã¾ã¾ ããããªããâ¦åºå¼ãããããªããï¼æ¯ååºã«éããï¼ ã§ããç¡çãããã"æ£ãããã©ã¼ã ã§è¡ããéé"ããå§ãã¦ãã ãããå°ã軽ãã®ééããå§ãã¦ãããã§ããã¹ã¯ã¯ããã§ãã©ã¬ã«ã¾ã§ãããããããªãããã³ããã¬ã¹ã§è¸ã¾ã§éãããªãå ´åã¯ééãè½ã¨ãã¾ãããã ã¾ãåºå¼ãããããªãããé£ããç°å¢ãã»ã¨ãã©ã ã¨æãã¾ãã®ã§ãè¡ããªãå ´åã¯ãã¯ã¼ã©ãã¯
èªå·±è²¬ä»»è« VS ã¿ããªã§æ¯ãåãè«ã çµæ¸çã«ãå¾ãªã®ã¯ã©ã£ã¡ï¼ ãã¼ã¿ã«åºã¥ãã¦æ¤è¨¼ãã¦ã¿ãçµæ⦠åã®å½ããªãã¦è¨ããããã¨ãããæ¥æ¬ã§ãããå®ã¯ãèªå·±è²¬ä»»è«ããã¨ã¦ãå¼·ãå½ã§ãã 人ããã¸ãã¹ã«å¤±æãã¦è¦å¢ã«é¥ã£ã¦ãã¦ããã²ã¨ã親ã§æ¯ãé£ããã°ããªããåè²ã¦ããã¦ãã¦ããè¥è ã«ãã¥ãããªãã貧ããèå¾ã®çæ´»ãããã£ã¦ãã¦ããããã§å¤ãã®äººãå£ã«ããã®ã¯ ãã ã£ã¦ãèªå·±è²¬ä»»ãããã ã¨ããè¨èã§ãã ⦠ããã«é¢ãã¦ãé¢ç½ãçµ±è¨ãããã¾ãã ä¸çåå½ã§è¡ããã貧å°åé¡ã¸ã®æè調æ»ï¼The Pew Global Attitudes Projectã2007å¹´ï¼ã§ãã ãèªåã§çãã¦ãããªããããªã¨ã¦ã貧ãã人ãã¡ã®é¢åãã¿ãã®ã¯ãå½ãæ¿åºã®è²¬ä»»ã§ããããã®èãã«ã¤ãã¦ã©ãæããï¼ãã¨ãã質åã«å¯¾ã㦠ãããã¯æããªããã¨çãã人ã®å²åã¯ä¸è¨ã®éãã ãã¤ã ï¼ 7% ã¤ã®ãªã¹ ï¼ 8%
ããã«ã¡ã¯ãããããã¡ãã§ãã å¼ç¤¾ã§ã¯æ¯å¹´6æãæ給æãªã®ã§ããã御社ã¯ãããã§ããããï¼ãããã ãã ãããªãã給ä¸æç´°ã®å°ãåãã¨ã»ã»ã» åºæ¬çµ¦ï¼è£éå´åæå½ï¼ï¼7000åà§(à¹â¢Ìã â¢Ìà¹)à«â§ ï½·ï¾ââââ(ï¾âï¾)ââââ!! å»å¹´ã¯è«¸ã æ¯ãããªãä¸å¹´ã ã£ããã©ãé å¼µã£ãç²æãããã¾ãã( â¢Ìદâ¢Ì©Ì¥Ì )ãå¼ç¤¾ã®åã人ãããã¨ãããããã¨ããããã¾ãã ã»ã»ã»ããï¼ã§ãæ¯ãè¾¼ã¾ãã¦ããéé¡ãããã¾ãå¤ãããªããããªã ç¨éï¼ç¤¾ä¼ä¿éºæï¼ï¼7000åã½(â¢ÌÏâ¢Ì )ã コï¾ââââ(ï¾Ð´ï¾ï¼)ââââ!! ä½ãã®å¾ã£ã¦æ¥ãããããã³ã¤ã³ããã å 訳ãè¦ã¦ã¿ãã¨ãå¤§å¹ ã«å¢å ãã¦ããã®ã¯ãä½æ°ç¨ã¨å¥åº·ä¿éºæã§ãããå»å¹´ã¯ãã¼ãã¹ã®éé¡ããããã大ããã£ãããç¿å¹´åº¦ã®åºæ¬çµ¦ããããå¾´åãããªãä½æ°ç¨ã®éé¡ãè¨ããã ãã¨ã¨ãä»å¹´ããä¼ç¤¾ã®æå±ããå¥åº·ä¿éºçµåã®å¤æ´ã«ä¼´ãä¿éºæã¢ããã¨
ã¨ããåå¼·ä¼ã§ãTensorFlowã§çµ±è¨ã¢ããªã³ã°ãã¨ããã¿ã¤ãã«ã§è¬ç¾©ããã¾ãããè´è¡ã¯Pythonã¦ã¼ã¶ãå¤ãããã¼ã¿éã大ããåé¡ãå¤ããã ã£ãã®ã§ãStanãããTensorFlowã§ç¹æ¨å®ããã¹ãã«ã伸ã°ãã¨ã¡ãªããã大ããã ããã¨æã£ã¦ãã®ãããªã¿ã¤ãã«ã«ãªãã¾ããã çºè¡¨è³æã¯ä»¥ä¸ã«ãªãã¾ãã TensorFlowã§çµ±è¨ã¢ããªã³ã° from . . çºè¡¨è³æã®éä¸ã«åºã¦ããtf_tutorial.htmlã¨modeling.htmlã®å 容ã¯ã以ä¸ã®ipynbãhtmlã§åºåãããã®ã§ãï¼è¦ã¥ããã£ããããã°ã©ã åã®ã¨ãããã¯ãªãã¯ãã¦GitHubã«ç§»åãã¦è¦ã¦ãã ããï¼ã ã¡ãªã¿ã«åãç´¹ä»ãã¦ããTensorFlowã®æ¸ãæ¹ã¯Eager Executionã§ã¯ãªããDefine and Runã®ããå¤ãæ¸ãæ¹ã§ãããã¾ãæ°ã«ãã¦ãã¾ãããã©ã ããã§ã¯TensorFlowã
Edward2,TFP import tensorflow_probability as tfp from tensorflow_probability import edward2 as ed bag_of_words = np.random.poisson(5., size=[256, 32000]) # training data as matrix of counts data_size, feature_size = bag_of_words.shape # number of documents x words (vocabulary) units = [100, 30, 15] # number of stochastic units per layer shape = 0.1 # Gamma shape parameter w2 = Gamma(0.1, 0.3, samp
ãæ©æ¢°å¦ç¿ãããã£ã¼ãã©ã¼ãã³ã°ãããããã¯ãã§ã¼ã³ããããã¼ã³ããªã©ã社ä¼çµæ¸ã大ããå¤ããå¯è½æ§ãããã¨ãã¦æ³¨ç®ãéããå 端ãã¯ããã¸ã¼ããã¥ã¼ã¹ãæ°èã§ãåãä¸ãããããã¨ãå¤ããªã£ã¦ããããã®éè¦æ§ã¯ç¤¾ä¼ã«åºãèªç¥ããå§ãã¦ããã¨ãããã ããã ä¸æ¹ãã¤ããã¼ã¿ã¼ãèµ·æ¥å®¶ã®éã§ã¯ãã§ã«æ¬¡ã«æ¥ãæè¡ã¸ã®æºåãçã ã¨é²ãããã¦ããã 次ä¸ä»£ãã¯ããã¸ã¼ã®ä¸ã§ããå®ç¾å¯è½æ§ãé«ããã¤ã³ãã¯ããé常ã«å¤§ããã¨ãããã¦ããã®ããARï¼æ¡å¼µç¾å®ï¼ã¯ã©ã¦ããã ã ARã¨è¨ãã°ããã±ã¢ã³GOãIKEAã®ARã¢ããªãæåã ãããã¹ããã®ã«ã¡ã©ãæ ãåºãç¾å®ç©ºéã«ãCGã®3Dã¢ãã«ãéãåãããä»®æ³ã®ç©ä½ãããããããã«åå¨ãããã®ããã«è¡¨ç¾ã§ããæè¡ã ããã¾ã§ã®ARã¢ããªã§ã¯ãã¹ããã«æ ãåºããã3Dã¢ãã«ãæ å ±ã¯ããã®ã¹ããã§ããè¦ããã¨ãã§ããªãã£ãããã¯ã©ã¦ãåãããã¨ã§è¤æ°ã®ã¹ããã§ã·ã§ã¢
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}