ä¹±æ°ãã¥ã¼ãã³ã°ã«ããåãã®ã³ã¯ 1. ä¸æ§ä¹±æ° ããããMathé¢æ°ã«ããä¹±æ°ã éå³ãèã¿ãå¼·ãããã®ã¾ã¾ã§ã¯ä½¿ãç©ã«ãªããªãã 2. éå³ãåãé¤ããä¹±æ° ä¸å¦çã¨ãã¦èã¿ãéå³ãåãé¤ããç¶æ
ãä¸æ§ä¹±æ°ç¹æã®çºä½çãªã¬ã¿ããããªãã®ããããã ãããï¼ éå»2ãã¬ã¼ã ã«ãè·é¢33%以å
ã®éè¤æ°ãåºãªãããã«ãªã£ã¦ããã ã·ã£ããã«ãã¹ãããã®ã¢ãã¡å¦çãªã©ã2é£ç¶ã§åãæ°åãéãªãã¨ãã°ã£ã¦è¦ãã表ç¾ã«æå¹ã 3. ã³ã¯ã®ããä¹±æ° ä¹±æ°ã®æ¨å³ãæ¿ç¸®ãããç¶æ
ãä¸å¿æ¥µéå®çã«ãããèªç¶ãªé¢¨åãã«æ¿ç¸®ããã¦ããã å ç®å¼ã«ãã天ç¶ã®æ£è¦åå¸ã¯ãããã¯ã¹ãã¥ã¼ã©ã¼æ³ã®é¤æ®ãããä¹±æ°ã¨éããå ç®åæ°ã§çç£è
ãã¨ã®å³ãããåºããã ãã¼ãã£ã£ã¯ã«ãèªç¶ã·ãã¥ã¬ã¼ã·ã§ã³ã¨ç¸æ§ãè¯ãã 4. è³éãªã¾ãå³ãåºããä¹±æ° å£ã«å«ãã å¾ã«ãè±ããªé¦ããåºããä¹±æ°ã移åå¹³åã«ããé£ç¶æ§ãåºããã¨ã§ãæºãã
{{#tags}}- {{label}}
{{/tags}}