Multiple XY Line Chart Multiple line chart with multiple custom x. View details »
ããªãã¼ã«ã°ã«ã¼ãã®æ©æ¯å±ãé ãã¤3æ¯(750å)ãã±ãããã¨ãã¦ããã«ã¹ãã©å®¢ããåºã¨SNSä¸ã®ããã«ã§è¿ãè¨ã¡ã«
Apache Pinot is a real-time distributed OLAP datastore, built to deliver scalable real-time analytics with low latency. It can ingest from batch data sources (such as Hadoop HDFS, Amazon S3, Azure ADLS, Google Cloud Storage) as well as stream data sources (such as Apache Kafka). Pinot was built by engineers at LinkedIn and Uber and is designed to scale up and out with no upper bound. Performance a
LinkedInã¯ãå社ãéçºãããªã¢ã«ã¿ã¤ã ãã¼ã¿åæãå®ç¾ããåæ£OLAPãã¼ã¿ã¹ãã¢ãPinotãããªã¼ãã³ã½ã¼ã¹ã§å ¬éãããã¨ãæããã«ãã¾ããã Open Sourcing Pinot: Scaling the Wall of Real-Time Analytics | LinkedIn Engineering LinkedInã¯ãã¸ãã¹ã«ç¹åããã½ã¼ã·ã£ã«ã¡ãã£ã¢ãµã¼ãã¹ã å社ã¯ãã®ãµã¼ãã¹ã§çºçãã大éã®ãã¼ã¿ãåæãããã©ãããã©ã¼ã ã¨ãã¦ããã§ã«2年以ä¸Pinotãéç¨ãã¦ãã¦ãããæ¥ã æ°åå件ã®ãã¼ã¿ãæå ¥ããæ°åå件ãã®ãã¼ã¿ãä¿åãæ¯æ¥1åã¯ã¨ãªãå®è¡ãã10ããªç§ç¨åº¦ã®ã¬ã¤ãã³ã·ã§ãªã¢ã«ã¿ã¤ã åæãã¦ããã¨ã®ãã¨ã ä¾ãã°ãLinedInã®ãµã¼ãã¹ã§ãããWho's Viewed Your Profileãï¼ããªãã®ãããã£ã¼ã«ã誰ãè¦ãããããA/Bãã¹ããã¬
主è¦ãã©ã¦ã¶ã§å®è¡å¯è½ãªãã¤ããªå½¢å¼ãWebAssemblyãã®éçºãã¹ã¿ã¼ããChromeãWebKitãFirefoxãMicrosoft EdgeãLLVMãUnityãããµãã¼ããç¸æ¬¡ãã§è¡¨æ GitHubã§å ¬éããã¦ãããWebAssembly High-Level Goalsãã«ããã¨ãWebAssemblyãç®æãã¦ããã®ã¯ãã©ã®Webãã©ã¦ã¶ã§ãå®è¡å¯è½ãªãã¼ã¿ãã«ã§ããã¤ãã¼ãæéãå°ããã¦æ¸ãã³ã³ãã¤ã«æ¸ã¿ã®ãã¤ããªãã©ã¼ãããã§ãæ±ç¨çãªãã¼ãã¦ã§ã¢ã®è½åãæ´»ç¨ãããã¤ãã£ãã¹ãã¼ãã§å®è¡ã§ãããããã¢ãã¤ã«ãIoTãå«ãå¹ åºããã©ãããã©ã¼ã ããµãã¼ããããã®ã è¦ããã«ãããã°ã©ãã³ã°è¨èªãã³ã³ãã¤ã«ããã©ã®Webãã©ã¦ã¶ã§ãé«éã«å®è¡ã§ãããã¤ããªãã©ã¼ããããéçºãããã¨ããã®ãWebAssemblyãç®æããã®ã§ããæåã®WebAssemblyã®å®è£ ã§ã¯C/
2018å¹´4æ25æ¥ããã¡ã¾ãã¦ã ãCodeIQãã®ããã°ã©ãã³ã°è 試ããµã¼ãã¹ãå¹´å確ç´ã¹ã«ã¦ããµã¼ãã¹ã¯ã ITã¨ã³ã¸ãã¢ã®ããã®å¹´å確ç´ã¹ã«ã¦ããµã¼ãã¹ãmoffers by CodeIQãhttps://moffers.jp/ ã¸ä¸æ¬åãããã¾ããã ããã¾ã§å¤ãã®ITã¨ã³ã¸ãã¢ã®æ¹ã«ãCodeIQãããå©ç¨ããã ãã¾ãã¦ã æ¹ãã¦å¿ããæ·±ã御礼ç³ãä¸ãã¾ãã ã¾ããã¨ã³ã¸ãã¢ã®ããã®Webãã¬ã¸ã³ãCodeIQ MAGAZINEãã¯ã ãªã¯ããNEXTã¸ã£ã¼ãã«( https://next.rikunabi.com/journal/ )ã«ä¸é¨ã®è¨äºã®ç§»è¡ãäºå®ãã¦ããã¾ãã ä»å¾ã¯ãmoffers by CodeIQãã«ã¦ã ITã¨ã³ã¸ãã¢ã®çæ§ã®ããè¯ã転è·ããµãã¼ãããããã«ãããä¸å±¤åªãã¦ã¾ããã¾ãã®ã§ã å¼ãç¶ããæ顧ã®ã»ã©ä½åãããããé¡ãç³ãä¸ãã¾ãã ã¾ããCod
ã¨ã¼ãããææ°ã®å»å¢â¦ãã«ã®ã¼ã®å·å´å¡ãI.M. Cooling Towerãã®å é¨ å»å¢ããã¢ã®ä¸ã§ããããã¯ã©ã¹ã®äººæ°ãèªãã®ãããã«ã®ã¼ã«ããç«åçºé»æã®å·å´å¡âI.M. Cooling Towerâã 2006å¹´ã«ééãããå·å´æ½è¨ããã®ã¾ã¾æ¾ç½®ããããã¨ãããç¾å¨ã¯ãã£ããèå»ãã¦ãã¾ãã ã¨ã¼ãããã§æãã¯ã¼ã«ãªå·å´å¡ã¨ãè¨ãããå é¨ã®æ§åãã覧ãã ããã 1. å ´æã¯ããã«ã®ã¼ã®å·¥æ¥å°å¸¯ã§ããã·ã£ã«ã«ãã¯ã 2. åååçºé»æãé£æ³ããå¤è¦ã§ãããç³çã«ããç«åçºé»æã®å·å´æ½è¨ã 3. å é¨ã«è¶³ãè¸ã¿å ¥ããã¨â¦â¦ã 4. ä¸å¤®ã«ã¯ãç¿ã®ãããªä¸¸ãå½¢ç¶ã®ãã®ãã 5. ããªããã¼ãã§ãã¾ãããåºã¯ã©ããªã£ã¦ããã®ã§ããããã 6. è¦ä¸ããã¨ããã 7. æ®å½±è ã°ã«ã¼ãã®ã²ã¨ããã¬ã¹ãã¹ã¯ããã¦ããããã§ããâ¦â¦ã 8. ãã¦ããªã人ãããã®ã§ãå¥ã«å±éºãªå ´æã¨ããããã§ã¯ãªã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}