Jubatus Casual Talks #2(URL : http://connpass.com/event/3968/ ) ã®çºè¡¨è³æã§ãã 質åãããã°æ°è»½ã«ãåãåãããã ãããRead less
Canon ï¼ï¼ï¼ï¼å¹´ï¼æï¼ï¼æ¥ ã¯ã©ã¹ã¿ãªã³ã°ï¼ï¼ï¼ æ±äº¬å·¥æ¥å¤§å¦ è¨ç®å·¥å¦å°æ» æå±± å° [email protected]itech.ac.jp http://sugiyama-www.cs.titech.ac.jp/~sugi/ æ¦è¦ æ¬è¬ç¾©ã§ã¯ï¼ã¯ã©ã¹ã¿ãªã³ã°ã®åºç¤ã説æ ããå¾ï¼ç¢ºçã¢ãã«ã«åºã¥ãæ§ã ãªã¯ã©ã¹ã¿ ãªã³ã°ææ³ãç´¹ä»ãã 2 ã¯ã©ã¹ã¿ãªã³ã°ã®å®å¼å è¨ç·´ãã¼ã¿ ã¯ã©ã¹ã©ãã« å²ãå½ã¦ãæ師ãªãå¦ç¿åé¡ ã« ã 3 ä¼¼ããã¼ã¿ã«ã¯åãã©ãã«ãä»ä¸ ä¼¼ã¦ããªããã¼ã¿ã«ã¯ç°ãªãã©ãã«ãä»ä¸ ç®æ¬¡ 1. ã¯ã©ã¹ã¿ãªã³ã°ã®åºç¤ A) B) 4 Kå¹³åæ³ ã¯ã©ã¹ã¿ãªã³ã°çµæã®è©ä¾¡ 2. çæã¢ãã«æ¨å®ã«åºã¥ãã¯ã©ã¹ã¿ãªã³ã° 3. ã¯ã©ã¹ã©ãã«ã®ç´æ¥æ¨å® 4. ã¾ã¨ã ã¯ã©ã¹å æ£å¸åæå°å ã¯ã©ã¹ã¿ãªã³ã° ã¯ã©ã¹å æ£å¸åã®æå°åï¼ 5 ãããï¼ãã®æå°åã¯ï¼®ï¼°å°é£
å³æ¸é¤¨ã®å³æ¸ã¯ä½ããã®ç¹å¾´å¥ã«ã°ã«ã¼ãåããã¦ãããæ°èã®ç´é¢ã¯ç·åã社ä¼ãçµæ¸ãå½éãçæ´»ãæçãã¹ãã¼ããå°åãªã©ã«åãããã¦ãããå³æ¸ã¯å³æ¸é¤¨ã®ç®¡çè ããæ°èã®ç´é¢ã¯ç·¨éè ãã¡ãã°ã«ã¼ãåããã¦ãããããããã¤ã³ã¿ã¼ãããä¸ã®å¤§éã®ããã¹ããä½ããã®ç¹å¾´å¥ã«ã°ã«ã¼ãåãããå ´åããã¹ã¦ã®å 容ãèªã¿ãã°ã«ã¼ãåããããã¨ã¯ç¾å®çã§ã¯ãªããã¾ãã人çºçã«ã°ã«ã¼ãåããããã¨ã¯èªãå´ã®ä¸»è¦³ã®å°è±¡ãèªèãªã©ã«å·¦å³ãããããã客観çãªã°ã«ã¼ãåããæ±ãããã¦ããã æ¬ç¨¿ã§ã¯ãããã¹ããã©ã®ã°ã«ã¼ãã«å±ãããã«é¢ããæ å ±(å¤çè¦æºã¨ãã¶)ãç¨ããã«ã°ã«ã¼ãåãããæ¹æ³ã説æããããã®ãããªã°ã«ã¼ãåãæ¹æ³ãã¯ã©ã¹ã¿ã¼åæã¨å¼ã¶ãããã¹ãã®ã¯ã©ã¹ã¿ã¼åæã¯ã主ã«æ¬¡ã®ãããªã¢ããã¼ãå¤ç¨ããã¦ããã (ï¼)åä½ã®ç¹å¾´ã®æ å ±ã«åºã¥ãã¦ãå¹³é¢ãç«ä½ç©ºéä¸ã§æ£å¸å³ãä½æããåå¸ç¶æ³ããã¯ã©ã¹ã¿ã¼ã®å½¢æç¶æ³
In graph theory, a clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. Evidence suggests that in most real-world networks, and in particular social networks, nodes tend to create tightly knit groups characterised by a relatively high density of ties; this likelihood tends to be greater than the average probability of a tie randomly established betw
In statistics, single-linkage clustering is one of several methods of hierarchical clustering. It is based on grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that contain the closest pair of elements not yet belonging to the same cluster as each other. This method tends to produce long thin clusters in which nearby elements of the same cluster
æ©æ¢°å¦ç¿ç³»ã®ã¨ã³ããªãç¶ãã¦æ¸ãã¦ã¿ããã¯ã©ã¹ã¿ãªã³ã°ã«ã¤ãã¦ç¥ããªã人ã¯ä»¥ä¸ã®ã¨ã³ããªèªãã§ãã¡ãã·ãããã·ãã ã¨æãã®ã§ãã¯ã©ã¹ã¿ãªã³ã°ã¨ããæ¦å¿µã«ã¤ãã¦ã¯ç¥ã£ã¦ãããã®ã¨ããã ããã§ãä»æ¥ã¯ã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã®è©±ãèªç¶è¨èªå¦ç以å¤ã§ãå©ç¨ããã¦ããããããã¯ã°ã©ãã®ã¹ãã¯ãã«ã«åºã¥ãã¯ã©ã¹ã¿ãªã³ã°ã®ææ³ã§ãåæ師ããå¦ç¿ã¸ã®æ¡å¼µããããããã®ãå©ç¹ããªã«ããããã¨ããã¨ã¯ã©ã¹ã¿ãªã³ã°ãã°ã©ãã®åå²åé¡(çã§ããã¨ãã¸ãã«ãã)ã«å¸°çãã¦è§£ãææ³ã§ãã©ããããµãã«åå²ãããã«ãã£ã¦ Normalized cut (Ncut) ã¨ã Min-max cut (Mcut) ã¨ãããããããã å®å ¨ã«ã°ã©ããåå²ã§ããå ´åã¯ããã§ãã§ãããã§ãããªã®ã ããå®ä¸çã®ã°ã©ãã¯ãããªç°¡åã«åããªããã¨ãå¾ã ã«ãã¦ãããããã§è¿ä¼¼ãã¦ãã®ã°ã©ãåå²åé¡ã解ãã®ã ããNormalized c
ä¹ ãã¶ãã«ããã°ãæ´æ°ãã¦ã¿ãã 以åã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã«ã¤ãã¦è¨äºãæ¸ãããããã®ã¨ãã¯ã ãã¶åå¼·ä¸è¶³ã§ãå°ãè¦å½éãã®ãã¨ãæ¸ãã¦ããæ°ãããã ã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã¯ãæ¬è³ªçã«ã¯ã©ãã©ã·ã¢ã³åºæãããæ³ã¨åããã¨ããã¦ãããã©ãã©ã·ã¢ã³åºæãããæ³ã¯æ¬¡å åæ¸ã®ææ³ã§ããã¨ãã¨ã®é«æ¬¡å 空éã«ããããã¼ã¿éã®é¡ä¼¼åº¦ããä½æ¬¡å ã«ååããå¾ã«ãåæ ãããããã«è¨è¨ããã¦ããããããçµæçã«é¡ä¼¼åº¦è¡åããå®ç¾©ãããã°ã©ãã»ã©ãã©ã·ã¢ã³ã®åºæå¤åé¡ã«å¸°çãããã®ã ãå ·ä½çã«ã¯ãã°ã©ãã»ã©ãã©ã·ã¢ã³Lã®åºæå¤ã大ããã»ãï¼å®å¼åã«ãã£ã¦ã¯å°ããã»ãï¼ããkçªç®ã¾ã§ãλ1, λ2, â¦,λk, ããã«å¯¾å¿ããåºæãã¯ãã«ãv1, v2, â¦, vk ã¨ããã¨ããã®åºæãã¯ãã«ãåã¨ãã¦ä¸¦ã¹ãè¡å V = (v1 v2 ⦠vk)ã®åè¡ããåãã¼ã¿ç¹ã®ä½æ¬¡å 空éã«ããã座æ¨ã¨ããããã®ã¨
ã¯ã©ã¹ã¿ãªã³ã° (clustering) ã¨ã¯ï¼åé¡å¯¾è±¡ã®éåãï¼å ççµå (internal cohesion) ã¨å¤çåé¢ (external isolation) ãéæããããããªé¨åéåã«åå²ããã㨠[Everitt 93, å¤§æ© 85] ã§ãï¼çµ±è¨è§£æãå¤å¤é解æã®åéã§ã¯ã¯ã©ã¹ã¿ã¼åæ (cluster analysis) ã¨ãå¼ã°ãï¼åºæ¬çãªãã¼ã¿è§£æææ³ã¨ãã¦ãã¼ã¿ãã¤ãã³ã°ã§ãé »ç¹ã«å©ç¨ããã¦ãã¾ãï¼ åå²å¾ã®åé¨åéåã¯ã¯ã©ã¹ã¿ã¨å¼ã°ãã¾ãï¼åå²ã®æ¹æ³ã«ãå¹¾ã¤ãã®ç¨®é¡ãããï¼å ¨ã¦ã®åé¡å¯¾è±¡ãã¡ããã©ä¸ã¤ã ãã®ã¯ã©ã¹ã¿ã®è¦ç´ ã¨ãªãå ´å(ãã¼ããªãããã¯ï¼ã¯ãªã¹ããªã¯ã©ã¹ã¿ã¨ããã¾ã)ãï¼éã«ä¸ã¤ã®ã¯ã©ã¹ã¿ãè¤æ°ã®ã¯ã©ã¹ã¿ã«åæã«é¨åçã«æå±ããå ´å(ã½ããï¼ã¾ãã¯ï¼ãã¡ã¸ã£ãªã¯ã©ã¹ã¿ã¨ããã¾ã)ãããã¾ãï¼ããã§ã¯åè ã®ãã¼ããªå ´åã®ã¯ã©ã¹ã¿ãªã³ã°ã«ã¤ãã¦è¿°ã¹ã¾ãï¼
é転æ¤äºãå æ¥ã¯ãªã¢ãã¦ãä¹ ãã¶ãã«é転è£å¤1ã3ãããç´ãããè¿·ãä¸ã®fujisawaã§ããã·ã³ãã«ãªãã¼ã¿ã¯ã©ã¹ã¿ãªã³ã°ãã¼ã«ãä½æãã¾ããã®ã§ããã®ãç´¹ä»ãããã¦ããã ãã¾ãã ã¯ã©ã¹ã¿ãªã³ã°ã¨ã¯ ã¯ã©ã¹ã¿ãªã³ã°ã¨ã¯ã対象ã®ãã¼ã¿éåä¸ã§ä¼¼ã¦ãããã®å士ãã¾ã¨ãã¦ãããã¤ãã®ã°ã«ã¼ãã«ãã¼ã¿éåãåå²ãããã¨ã§ãããã¼ã¿ãã¤ãã³ã°ãçµ±è¨åæãªã©ã§ããå©ç¨ããããã¼ã¿éåã®å¾åã調ã¹ããã¨ããªã©ã«å½¹ã«ç«ã¡ã¾ãã ä¾ãã°ä¸å³ã®ä¾ã§ãã¨ãå½åã¯ãã¼ã¿ãã´ãã£ã´ãã£ã¨æ··ãã£ã¦ãã¦ããåãããªãã£ãã®ã§ãããã¯ã©ã¹ã¿ãªã³ã°ãããã¨ã§ãå®éã¯3ã¤ã®ã°ã«ã¼ãã®ãã¼ã¿ã®ã¿ããæ§æããã¦ãããã¨ãåããã¾ãã æ§ã ãªã¯ã©ã¹ã¿ãªã³ã°ææ³ãããã¾ã§ã«ææ¡ããã¦ãã¾ãããæåãªã¨ããã§ã¯K-meansæ³ãªã©ãæãããã¾ããããã§ã¯è©³ç´°ã«ã¤ãã¦ã¯è§¦ãã¾ããããã¯ã©ã¹ã¿ãªã³ã°ã«ã¤ãã¦ãã詳ããç¥ãããæ¹ã¯ä»¥ä¸ã®
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}