ãã®è¨äºã¯Deep Learning Frameworkã®Caffeã«é¢ããä¸èº«ã©ããªã£ã¦ãã®ããã©ãããä»çµã¿ãªã®ï¼çãªãã¨ã調ã¹ã¦ããæã®ã¡ã¢ã§ããã¤ã³ã¹ãã¼ã«ãã¦å®è¡ãã¦ã¿ããã¿ãããªè¨äºã¯ç´ æ´ããããã®ãããã¤ãããã®ã§ãã¡ããåèã«ãã¦ãã ããã ã¾ã ãå§ããã°ãããªã®ã§éææ´æ°ãã¦ããã¾ãã ## æ¦è¦ Caffeã¯Convolutional Architecture for Fast Feature Embeddingã®ç¥ å身㯠DeCAF (Deep Convolutional Activation Feature) Open Sourceã®DeepLearning Frameworkã®ä¸ã¤ UC Berkeleyã®Berkeley Vision Learning Centerãä¸å¿ã«éçºããã¦ãã ## ç¹å¾´ #### ç»åèªèãå¾æ OpenCVãªã©ã®ä¾åã©ã¤ãã©ãªãª
æ¥æ¬ã®ãã¹ã±ãããã¼ã«ã®é¸æ4人ãã¤ã³ããã·ã¢ã§è²·æ¥ãªã©ã®ä¸é©åè¡çºããã£ãã¨ãããã¨ã§è¬¹æ å¦åã ã¨ããããããããªããããããããããã§ã¯æ¥æ¬ã®ã½ã¼ãã©ã³ãããã¡ãã·ã§ã³ãã«ã¹ã¯ã©ããã¦åå¨ãã¦ããã®ããæå°è ã®äºãªãã主義ã責任åé¿ãèæ¯ã«ãããæ¥æ¬ã¯ã©ãã©ãéå¯å®¹ãªå½ã«ãªã
大ãè³ãæ´èªæµ·è¨ï¼å¦æ¯PDé¨åéæï¼ãªããã¹ãã¯ã®äººä»¶è²»ã¯ãçæ´»ä¿è·ãæ±ããããã®ãã¨ããè¯ã¨ã³ããªã¼ãã§ã¦ããã®ã§ãããã¦éå¼µããã¦ã¿ãããªãããã¹ãã¯åé¡ãæ¥æ¬ã®ç§å¦è¡æ¿åé¡ãæ°ã«ãã¦ãã人ãã¡ã®ã»ã¨ãã©ã以ä¸ã®ãã¨ãããã£ãä¸ã§æè¦ãè¿°ã¹ã¦ããã¨ãããã¨ããã²ç解ãã¦ããã¦ããã ãããã å ±æãå¾ããã«ããçç± è£ç¦ã ããï¼æµã¾ãã¦ããããï¼ å ¨å¡ãå ¨å¡å¥½ããªãã¨ãä»äºã«ã§ããããã§ãªããã çæ´»ãã§ããªãã®ã¯å士ã ããããªããã å¼±è ã§ãªãå¼·è ã§ããã¯ãã ãã ç¨éã¯å¼±è ã«ä½¿ãã¹ãã ãã ãå士課ç¨ã¾ã§è¡ãããã¨ãï¼ãè£ç¦ãªè¨¼æ ãã§ããï¼ å¤§å¦éäºã«æãæ®ãã¦ããã¤ã¡ã¼ã¸ã®ããå£å¡ã®ä¸ä»£ï¼60代ï¼ã¯ã5人ã«1人ãã10人ã«1人ãã大å¦ã«è¡ã£ã¦ããªããä¸ä»£å¥å¤§å¦çµé¨è ã修士課ç¨é²å¦è ã®ããå²å with æ票çã§è©¦ç®ããå 容ã«ããã°ã修士課ç¨ã«é²å¦ãã¦ããã®ã¯100人ã«1人ãå士課ç¨
é¢å± æåï¼ããã ã¨ããã1904å¹´ï¼ææ²»37å¹´ï¼3æ12æ¥ - 1941å¹´11æ23æ¥[1][2]ï¼ã¯ãæ¥æ¬ã®å£°æ¥½å®¶ï¼ã½ãã©ãï¼ãä½æ²å®¶ã§ãã[1]ãæ§åã®éå±ã使ãããæãããã 1904å¹´3æ12æ¥ãå®æ¥å®¶ã®ç¶ã»é¢å±ç¥ä¹ä»ãæ¯ã»æåã®å¨ã¨ãã¦æ±äº¬åºæ±äº¬å¸å°ç³å·åºï¼ç¾å¨ã®æ±äº¬é½æ京åºï¼ã«çã¾ãã[2]ãç¶æ¹ã®å®¶ç³»ã¯äºæ¬æ¾è©ã®å¾¡æ®¿å»ã§ãããæ¯æ¹ã®ç¥ç¶ã¯ãã©ã³ã¹ç³»ã¢ã¡ãªã«äººå¤äº¤å®ãã£ã¼ã«ãºã»ã«ã¸ã£ã³ãã«ãæ¯æ¹ã®ç¥æ¯ã¯æ± ç°çµ²ã§ãã[2]ã伯ç¶ã¯åäºä¸å¸æ羽左è¡é[2]ã§ãããæ¥æ¬ã®å¤å ¸ã«ãç²¾éãã¦ãã[3]ãæåã®è²ã£ã家ã¯æ·å°2000åªãããç¥ç¶ã®ã«ã¸ã£ã³ãã«ãè³¼å ¥ãããã®ã ã£ã[4]ãå¾å ã¯ç¬¬11代宮å 次å®ã第16代é岡çç¥äºãåããé¢å±è²ä¸éã 4æ³ã®ããããç´ãèè¸ãé·åã«è¦ªãã¿ãæ§å¶ã»æ±äº¬å¥³åé«ç師ç¯å¦æ ¡éå±å°å¦æ ¡ï¼ç¾å¨ã®ãè¶ã®æ°´å¥³å大å¦éå±å°å¦æ ¡ï¼ã«å ¥å¦ã1912å¹´ï¼ææ²»45å¹´
ããã«ã¡ã¯ãæçç 究家ã®Yï½ï½ã§ãã ããã ããåºããã»ã©ããããããã ãé¶ããåå·çã§ããé£ã¹ããã¦ããä¸è¯æçã§ãè¡ã®ä¸è¯å±ããã§ãè¦ãããããã«ãªãã¾ããããããããã®ç§å¯ã¯ãé¦è¾æãè¬å³ããï½ã£ã·ãå ¥ã£ã風å³è±ããªè¾ãã½ã¼ã¹ããããã¨ã£ã¦ãè¾ãã¦åºæ¿çï¼ ã¾ã ã¾ã æãæ¥ãç¶ãä»ã®å£ç¯ã«ã¨ãã«ã´ã£ããã§ããä»åã¯ããã®ããã ãé¶ããããç°¡åããã«ã·ã¼ãã³ã¹ããããã§ãããããé¶ããèã§ä½ã£ããã£ã¨ãã¬ã³ã¸è¸ãé¶ã«ãã¦ã¿ã¾ããã ãããããé¶èã®è¸ãæ±ã使ãåã¥ãã¦ããã ããã¬ãï¼ç¬ï¼ãã¨ã£ã¦ãä¸è½ï¼ éèã«ãããã°ã¢ãªã¢ãªããã¾ãããå·ããä¸è¯ã®ã¿ã¬ã«ãã¦ã絶åããã²ãã²ãæ°è»½ã«ã試ããã ãããï½ã Yï½ï½ã®ããã ãé¶ã ãææãï¼2人åï¼ é¶ããèã1æï¼300gï¼ ãããã1/2è¢ ãã ããã1/2æ¬ ï¼Aï¼ é ã大ãã2 å¡©ãç ç³ãåå°ãã1å¼± çæ ç²ãå°ãã1 ããããããã¥
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}