login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249921
G.f.: Sum_{n>=0} x^n / (1-2*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^k * x^k].
1
1, 3, 17, 111, 805, 6147, 48641, 394863, 3266629, 27421395, 232867889, 1996302447, 17248208485, 150013649955, 1312111499105, 11532737017839, 101799869875717, 901975446062451, 8018470050567953, 71496291428776815, 639204721160345509, 5728606469731066947, 51453397357702434497
OFFSET
0,2
COMMENTS
Compare this sequence to its dual, A248053.
FORMULA
G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * 4^k * x^k].
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 2^(k-j) * 4^j * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * Sum_{j=0..k} C(k,j)^2 * 4^j * x^j.
a(n) = Sum_{k=0..[n/2]} 4^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 2^j.
Recurrence: (n-5)*(n-4)*(n-2)*n^2*a(n) = 3*(n-5)*(n-4)*(4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - (n-5)*(n-4)*(n-1)*(22*n^2 - 66*n + 53)*a(n-2) - 12*(n-5)*(n-2)*(3*n^3 - 21*n^2 + 44*n - 29)*a(n-3) + (n-3)*(143*n^4 - 1716*n^3 + 7111*n^2 - 11778*n + 6336)*a(n-4) - 48*(n-4)*(n-1)*(3*n^3 - 33*n^2 + 116*n - 127)*a(n-5) - 16*(n-5)*(n-2)*(n-1)*(22*n^2 - 198*n + 449)*a(n-6) + 192*(n-2)*(n-1)*(4*n^3 - 60*n^2 + 298*n - 489)*a(n-7) - 256*(n-6)^2*(n-4)*(n-2)*(n-1)*a(n-8). - Vaclav Kotesovec, Nov 09 2014
a(n) ~ sqrt((56 + 49*sqrt(2) + sqrt(2*(3905+2744*sqrt(2))))/2) * ((7 + 2*sqrt(2) + sqrt(41 + 28*sqrt(2)))/2)^n / (8*Pi*n). - Vaclav Kotesovec, Nov 09 2014
EXAMPLE
G.f.: A(x) = 1 + 3*x + 17*x^2 + 111*x^3 + 805*x^4 + 6147*x^5 + 48641*x^6 +...
where the g.f. is given by the binomial series identity:
A(x) = 1/(1-2*x) + x/(1-2*x)^3 * (1 + 2*x) * (1 + 4*x)
+ x^2/(1-2*x)^5 * (1 + 2^2*2*x + 4*x^2) * (1 + 2^2*4*x + 16*x^2)
+ x^3/(1-2*x)^7 * (1 + 3^2*2*x + 3^2*4*x^2 + 8*x^3) * (1 + 3^2*4*x + 3^2*16*x^2 + 64*x^3)
+ x^4/(1-2*x)^9 * (1 + 4^2*2*x + 6^2*4*x^2 + 4^2*8*x^3 + 16*x^4) * (1 + 4^2*4*x + 6^2*16*x^2 + 4^2*64*x^3 + 2561*x^4)
+ x^5/(1-2*x)^11 * (1 + 5^2*2*x + 10^2*4*x^2 + 10^2*8*x^3 + 5^2*16*x^4 + 32*x^5) * (1 + 5^2*4*x + 10^2*16*x^2 + 10^2*64*x^3 + 5^2*256*x^4 + 1024*x^5) +...
equals the series
A(x) = 1/(1-x) + x/(1-x)^3 * (1 + x) * (2 + 4*x)
+ x^2/(1-x)^5 * (1 + 2^2*x + x^2) * (4 + 2^2*2*4*x + 16*x^2)
+ x^3/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3) * (8 + 3^2*4*4*x + 3^2*2*16*x^2 + 64*x^3)
+ x^4/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (16 + 4^2*8*4*x + 6^2*4*16*x^2 + 4^2*2*64*x^3 + 256*x^4)
+ x^5/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (32 + 5^2*16*4*x + 10^2*8*16*x^2 + 10^2*4*64*x^3 + 5^2*2*256*x^4 + 1024*x^5) +...
We can also express the g.f. by another binomial series identity:
A(x) = 1 + x*(2 + (1+4*x)) + x^2*(4 + 2^2*2*(1+4*x) + (1+2^2*4*x+16*x^2))
+ x^3*(8 + 3^2*4*(1+4*x) + 3^2*2*(1+2^2*4*x+16*x^2) + (1+3^2*4*x+3^2*16*x^2+64*x^3))
+ x^4*(16 + 4^2*8*(1+4*x) + 6^2*4*(1+2^2*4*x+16*x^2) + 4^2*2*(1+3^2*4*x+3^2*16*x^2+64*x^3) + (1+4^2*4*x+6^2*16*x^2+4^2*64*x^3+256*x^4))
+ x^5*(32 + 5^2*16*(1+4*x) + 10^2*8*(1+2^2*4*x+16*x^2) + 10^2*4*(1+3^2*4*x+3^2*16*x^2+64*x^3) + 5^2*2*(1+4^2*4*x+6^2*16*x^2+4^2*64*x^3+256*x^4) + (1+5^2*4*x+10^2*16*x^2+10^2*64*x^3+5^2*256*x^4+1024*x^5)) +...
equals the series
A(x) = 1 + x*(1 + (2+4*x)) + x^2*(1 + 2^2*(2+4*x) + (4+2^2*2*4*x+16*x^2))
+ x^3*(1 + 3^2*(2+4*x) + 3^2*(4+2^2*2*4*x+16*x^2) + (8+3^2*4*4*x+3^2*2*16*x^2+64*x^3))
+ x^4*(1 + 4^2*(2+4*x) + 6^2*(4+2^2*2*4*x+16*x^2) + 4^2*(8+3^2*4*4*x+3^2*2*16*x^2+64*x^3) + (16+4^2*8*4*x+6^2*4*16*x^2+4^2*2*64*x^3+256*x^4))
+ x^5*(1 + 5^2*(2+4*x) + 10^2*(4+2^2*2*4*x+16*x^2) + 10^2*(8+3^2*4*4*x+3^2*2*16*x^2+64*x^3) + 5^2*(16+4^2*8*4*x+6^2*4*16*x^2+4^2*2*64*x^3+256*x^4) + (32+5^2*16*4*x+10^2*8*26*x^2+10^2*4*64*x^3+5^2*2*256*x^4+1024*x^5)) +...
MATHEMATICA
Table[Sum[4^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 2^j, {j, 0, n-2*k}], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 09 2014 *)
PROG
(PARI) /* By definition: */
{a(n, p, q)=local(A=1); A=sum(m=0, n, x^m/(1-p*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * p^k * x^k) * sum(k=0, m, binomial(m, k)^2 * q^k *x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n, 2, 4), ", "))
(PARI) /* By a binomial identity: */
{a(n, p, q)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2*p^(m-k)*q^k*x^k) * sum(k=0, m, binomial(m, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n, 2, 4), ", "))
(PARI) /* By a binomial identity: */
{a(n, p, q)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * p^(m-k)* sum(j=0, k, binomial(k, j)^2 * q^j * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n, 2, 4), ", "))
(PARI) /* By a binomial identity: */
{a(n, p, q)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * p^(k-j) * q^j * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n, 2, 4), ", "))
(PARI) /* Formula for a(n): */
{a(n, p, q)=sum(k=0, n\2, sum(j=0, n-2*k, q^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * p^j))}
for(n=0, 25, print1(a(n, 2, 4), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 08 2014
STATUS
approved