login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246423
G.f.: Sum_{n>=0} x^n / (1-3*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 3^k * x^k].
11
1, 4, 24, 168, 1286, 10440, 88112, 764368, 6766278, 60828024, 553529808, 5086837680, 47127896444, 439608960656, 4124536224864, 38891699480992, 368326082421446, 3501654020899800, 33403335855108368, 319612386771594608, 3066480362268978804, 29493401582426082032, 284301304326376855200
OFFSET
0,2
COMMENTS
a(n) == 2 (mod 4) iff n = 2^k for k>=2, and a(n) == 0 (mod 4) elsewhere except at a(0)=1 (conjecture).
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * 2^k * x^k].
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 3^(k-j) * 2^j * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * Sum_{j=0..k} C(k,j)^2 * 2^j * x^j.
a(n) = Sum_{k=0..[n/2]} 2^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 3^j.
Recurrence: (n-5)*(n-4)*(n-2)*n^2*a(n) = 4*(n-5)*(n-4)*(4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - 16*(n-5)*(n-4)*(n-1)*(2*n-3)^2*a(n-2) + 8*(n-5)*(n-2)*(4*n^3 - 28*n^2 + 54*n - 27)*a(n-3) + 24*(n-3)*(5*n^4 - 60*n^3 + 248*n^2 - 408*n + 216)*a(n-4) + 16*(n-4)*(n-1)*(4*n^3 - 44*n^2 + 150*n - 153)*a(n-5) - 64*(n-5)*(n-2)*(n-1)*(2*n-9)^2*a(n-6) + 32*(n-2)*(n-1)*(4*n^3 - 60*n^2 + 298*n - 489)*a(n-7) - 16*(n-6)^2*(n-4)*(n-2)*(n-1)*a(n-8). - Vaclav Kotesovec, Aug 26 2014
a(n) ~ c * d^n / n, where d = 10.094399065494857710014687346... is the root of the equation 16 - 128*d + 256*d^2 - 64*d^3 - 120*d^4 - 32*d^5 + 64*d^6 - 16*d^7 + d^8 = 0, and c = 0.5132545324612697424702223429844481717... . - Vaclav Kotesovec, Aug 26 2014
EXAMPLE
G.f.: A(x) = 1 + 4*x + 24*x^2 + 168*x^3 + 1286*x^4 + 10440*x^5 +...
where the g.f. is given by the binomial series identity:
A(x) = 1/(1-3*x) + x/(1-3*x)^3 * (1 + 2*x) * (1 + 3*x)
+ x^2/(1-3*x)^5 * (1 + 2^2*2*x + 4*x^2) * (1 + 2^2*3*x + 9*x^2)
+ x^3/(1-3*x)^7 * (1 + 3^2*2*x + 3^2*4*x^2 + 8*x^3) * (1 + 3^2*3*x + 3^2*9*x^2 + 27*x^3)
+ x^4/(1-3*x)^9 * (1 + 4^2*2*x + 6^2*4*x^2 + 4^2*8*x^3 + 16*x^4) * (1 + 4^2*3*x + 6^2*9*x^2 + 4^2*27*x^3 + 81*x^4)
+ x^5/(1-3*x)^11 * (1 + 5^2*2*x + 10^2*4*x^2 + 10^2*8*x^3 + 5^2*16*x^4 + 32*x^5) * (1 + 5^2*3*x + 10^2*9*x^2 + 10^2*27*x^3 + 5^2*81*x^4 + 243*x^5) +...
equals the series
A(x) = 1/(1-x) + x/(1-x)^3 * (1 + x) * (3+2*x)
+ x^2/(1-x)^5 * (1 + 2^2*x + x^2) * (9+2^2*3*2*x+4*x^2)
+ x^3/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3) * (27+3^2*9*2*x+3^2*4*3*x^2+8*x^3)
+ x^4/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (81+4^2*27*2*x+6^2*9*4*x^2+4^2*3*8*x^3+16*x^4)
+ x^5/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (243+5^2*81*2*x+10^2*27*4*x^2+10^2*9*16*x^3+5^2*3*18*x^4+32*x^5) +...
We can also express the g.f. by another binomial series identity:
A(x) = 1 + x*(3 + (1+2*x)) + x^2*(9 + 2^2*3*(1+2*x) + (1+2^2*2*x+4*x^2))
+ x^3*(27 + 3^2*9*(1+2*x) + 3^2*3*(1+2^2*2*x+4*x^2) + (1+3^2*2*x+3^2*4*x^2+8*x^3))
+ x^4*(81 + 4^2*27*(1+2*x) + 6^2*9*(1+2^2*2*x+4*x^2) + 4^2*3*(1+3^2*2*x+3^2*4*x^2+8*x^3) + (1+4^2*2*x+6^2*4*x^2+4^2*8*x^3+16*x^4))
+ x^5*(243 + 5^2*81*(1+2*x) + 10^2*27*(1+2^2*2*x+4*x^2) + 10^2*9*(1+3^2*2*x+3^2*4*x^2+8*x^3) + 5^2*3*(1+4^2*2*x+6^2*4*x^2+4^2*8*x^3+16*x^4) + (1+5^2*2*x+10^2*4*x^2+10^2*8*x^3+5^2*16*x^4+32*x^5)) +...
equals the series
A(x) = 1 + x*(1 + (3+2*x)) + x^2*(1 + 2^2*(3+2*x) + (9+2^2*3*2*x+4*x^2))
+ x^3*(1 + 3^2*(3+2*x) + 3^2*(9+2^2*3*2*x+4*x^2) + (27+3^2*9*2*x+3^2*4*3*x^2+8*x^3))
+ x^4*(1 + 4^2*(3+2*x) + 6^2*(9+2^2*3*2*x+4*x^2) + 4^2*(27+3^2*9*2*x+3^2*4*3*x^2+8*x^3) + (81+4^2*27*2*x+6^2*9*4*x^2+4^2*3*8*x^3+16*x^4))
+ x^5*(1 + 5^2*(3+2*x) + 10^2*(9+2^2*3*2*x+4*x^2) + 10^2*(27+3^2*9*2*x+3^2*4*3*x^2+8*x^3) + 5^2*(81+4^2*27*2*x+6^2*9*4*x^2+4^2*3*8*x^3+16*x^4) + (243+5^2*81*2*x+10^2*27*4*x^2+10^2*9*16*x^3+5^2*3*18*x^4+32*x^5)) +...
PROG
(PARI) /* By definition: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1-3*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 2^k * x^k) * sum(k=0, m, binomial(m, k)^2 * 3^k * x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 3^(m-k) * 2^k * x^k) * sum(k=0, m, binomial(m, k)^2 * x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 3^(m-k) * sum(j=0, k, binomial(k, j)^2 * 2^j * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * 3^(k-j) * 2^j * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Formula for a(n): */
{a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 2^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 3^j))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 25 2014
STATUS
approved