login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246510
G.f.: Sum_{n>=0} x^n / (1-4*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 3^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^k * x^k].
4
1, 5, 36, 305, 2821, 27690, 282699, 2967285, 31785786, 345815975, 3808549531, 42360017130, 474990254821, 5362633500755, 60897115958286, 695012481567465, 7966829676299139, 91674042449673960, 1058486539560201051, 12258669983923625475, 142359286920427682046, 1657287004720545992505
OFFSET
0,2
COMMENTS
a(n) == 1 (mod 3) iff n = A074939(k) for k>=0, where A074939 gives even numbers such that base 3 representation contains no 2.
a(n) == 2 (mod 3) iff n = A074938(k) for k>=0, where A074938 gives odd numbers such that base 3 representation contains no 2.
FORMULA
G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^(n-k) * 3^k * x^k].
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 4^(k-j) * 3^j * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 4^(n-k) * Sum_{j=0..k} C(k,j)^2 * 3^j * x^j.
a(n) = Sum_{k=0..[n/2]} 3^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 4^j.
a(n) ~ sqrt(36 + 29*sqrt(3) + 3*sqrt(423 + 232*sqrt(3))) * (9/2 + sqrt(3) + 3/2*sqrt(9 + 4*sqrt(3)))^n / (8*Pi*n). - Vaclav Kotesovec, Oct 04 2014
EXAMPLE
G.f.: A(x) = 1 + 5*x + 36*x^2 + 305*x^3 + 2821*x^4 + 27690*x^5 +...
MATHEMATICA
Table[Sum[3^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 4^j, {j, 0, n-2*k}], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 04 2014 *)
PROG
(PARI) /* By definition: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1-4*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 3^k * x^k) * sum(k=0, m, binomial(m, k)^2 * 4^k * x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 4^(m-k) * 3^k * x^k) * sum(k=0, m, binomial(m, k)^2 * x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * 4^(k-j) * 3^j * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 4^(m-k) * sum(j=0, k, binomial(k, j)^2 * 3^j * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Formula for a(n): */
{a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 3^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 4^j))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 27 2014
STATUS
approved