login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245929
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} (-1)^k * C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * (-2*x)^j.
11
1, -26, 1926, -179780, 18601030, -2040558156, 232474675356, -27194647204296, 3243950895157830, -392816395353590780, 48137032861960009396, -5956254538539775751736, 742934976698338610043676, -93295798612937748051169400, 11783597764983598765508801400
OFFSET
0,2
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n / (1+x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2*(-x)^k] * [Sum_{k=0..n} C(n,k)^2*(2*x)^k].
a(n) = Sum_{k=0..2*n} Sum_{j=0..4*n-2*k} C(4*n-k, k+j)^2 * C(k+j, k)^2 * (-1)^j * 2^k.
a(n) = Sum_{k=0..2*n} C(2*k, k) * C(2*n+k, 2*n-k)^2 * (-2)^(2*n-k).
Recurrence: n^2*(4*n-5)*a(n) = -2*(4*n-3)*(68*n^2 - 102*n + 21)*a(n-1) - 4*(2*n-3)^2 * (4*n-1)*a(n-2). - Vaclav Kotesovec, Aug 15 2014
a(n) ~ sqrt((4+sqrt(18))/16) * (-1)^n * (68+48*sqrt(2))^n / (Pi*n). - Vaclav Kotesovec, Aug 15 2014
EXAMPLE
G.f.: A(x) = 1 - 26*x^4 + 1926*x^8 - 179780*x^12 + 18601030*x^16 -+...
where the g.f. is given by the binomial series:
A(x) = 1 + x*(1 - (1-2*x)) + x^2*(1 - 2^2*(1-2*x) + (1-2^2*2*x+4*x^2))
+ x^3*(1 - 3^2*(1-2*x) + 3^2*(1-2^2*2*x+4*x^2) - (1-3^2*2*x+3^2*4*x^2-8*x^3))
+ x^4*(1 - 4^2*(1-2*x) + 6^2*(1-2^2*2*x+4*x^2) - 4^2*(1-3^2*2*x+3^2*4*x^2-8*x^3) + (1-4^2*2*x+6^2*4*x^2-4^2*8*x^3+16*x^4))
+ x^5*(1 - 5^2*(1-2*x) + 10^2*(1-2^2*2*x+4*x^2) - 10^2*(1-3^2*2*x+3^2*4*x^2-8*x^3) + 5^2*(1-4^2*2*x+6^2*4*x^2-4^2*8*x^3+16*x^4) - (1-5^2*2*x+10^2*4*x^2-10^2*8*x^3+5^2*16*x^4-32*x^5))
+ x^6*(1 - 6^2*(1-2*x) + 15^2*(1-2^2*2*x+4*x^2) - 20^2*(1-3^2*2*x+3^2*4*x^2-8*x^3) + 15^2*(1-4^2*2*x+6^2*4*x^2-4^2*8*x^3+16*x^4) - 6^2*(1-5^2*2*x+10^2*4*x^2-10^2*8*x^3+5^2*16*x^4-32*x^5) + (1-6^2*2*x+15^2*4*x^2-20^2*8*x^3+15^2*16*x^4-6^2*32*x^5+64*x^6)) +...
We can also express the g.f. by the binomial series identity:
A(x) = 1/(1+x) + x/(1+x)^3*(1-x)*(1+2*x)
+ x^2/(1+x)^5*(1 - 2^2*x + x^2)*(1 + 2^2*2*x + 4*x^2)
+ x^3/(1+x)^7*(1 - 3^2*x + 3^2*x^2 - x^3)*(1 + 3^2*2*x + 3^2*4*x^2 + 8*x^3)
+ x^4/(1+x)^9*(1 - 4^2*x + 6^2*x^2 - 4^2*x^3 + x^4)*(1 + 4^2*2*x + 6^2*4*x^2 + 4^2*8*x^3 + 16*x^4)
+ x^5/(1+x)^11*(1 - 5^2*x + 10^2*x^2 - 10^2*x^3 + 5^2*x^4 - x^5)*(1 + 5^2*2*x + 10^2*4*x^2 + 10^2*8*x^3 + 5^2*16*x^4 + 32*x^5)
+ x^6/(1+x)^13*(1 - 6^2*x + 15^2*x^2 - 20^2*x^3 + 15^2*x^4 - 6^2*x^5 + x^6)*(1 + 6^2*2*x + 15^2*4*x^2 + 20^2*8*x^3 + 15^2*16*x^4 + 6^2*32*x^5 + 64*x^6) +...
Note that all coefficients of x^k in A(x) vanish except for k = 4*n, n>=0.
MATHEMATICA
Table[Sum[Sum[Binomial[4*n-k, k+j]^2 * Binomial[k+j, k]^2 * (-1)^j * 2^k, {j, 0, 4*n-2*k}], {k, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 15 2014 *)
PROG
(PARI) /* By definition: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, (-1)^k*binomial(m, k)^2*sum(j=0, k, binomial(k, j)^2*(-2)^j*x^j)+x*O(x^n))), n)}
for(n=0, 20, print1(a(4*n), ", "))
(PARI) /* From binomial identity: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1+x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2*(2*x)^k) * sum(k=0, m, binomial(m, k)^2*(-x)^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 20, print1(a(4*n), ", "))
(PARI) /* Formula for a(n), skipping zero-valued terms: */
{a(n)=sum(k=0, n\2, sum(j=k, n-k, binomial(n-k, j)^2*binomial(j, k)^2*(-1)^(k-j)*2^k))}
for(n=0, 20, print1(a(4*n), ", "))
(PARI) /* From formula for a(n): */
{a(n)=sum(k=0, 2*n, sum(j=0, 4*n-2*k, binomial(4*n-k, k+j)^2*binomial(k+j, k)^2*(-1)^j*2^k))}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* From formula for a(n): */
{a(n)=sum(k=0, 2*n, binomial(2*k, k)*binomial(2*n+k, 2*n-k)^2*(-2)^(2*n-k))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A005643 A054853 A257947 * A206390 A268089 A173949
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 15 2014
STATUS
approved