login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} x^n / (1-2*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^k * x^k].
1

%I #7 Nov 09 2014 10:24:28

%S 1,3,17,111,805,6147,48641,394863,3266629,27421395,232867889,

%T 1996302447,17248208485,150013649955,1312111499105,11532737017839,

%U 101799869875717,901975446062451,8018470050567953,71496291428776815,639204721160345509,5728606469731066947,51453397357702434497

%N G.f.: Sum_{n>=0} x^n / (1-2*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^k * x^k].

%C Compare this sequence to its dual, A248053.

%F G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * 4^k * x^k].

%F G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 2^(k-j) * 4^j * x^j.

%F G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * Sum_{j=0..k} C(k,j)^2 * 4^j * x^j.

%F a(n) = Sum_{k=0..[n/2]} 4^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 2^j.

%F Recurrence: (n-5)*(n-4)*(n-2)*n^2*a(n) = 3*(n-5)*(n-4)*(4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - (n-5)*(n-4)*(n-1)*(22*n^2 - 66*n + 53)*a(n-2) - 12*(n-5)*(n-2)*(3*n^3 - 21*n^2 + 44*n - 29)*a(n-3) + (n-3)*(143*n^4 - 1716*n^3 + 7111*n^2 - 11778*n + 6336)*a(n-4) - 48*(n-4)*(n-1)*(3*n^3 - 33*n^2 + 116*n - 127)*a(n-5) - 16*(n-5)*(n-2)*(n-1)*(22*n^2 - 198*n + 449)*a(n-6) + 192*(n-2)*(n-1)*(4*n^3 - 60*n^2 + 298*n - 489)*a(n-7) - 256*(n-6)^2*(n-4)*(n-2)*(n-1)*a(n-8). - _Vaclav Kotesovec_, Nov 09 2014

%F a(n) ~ sqrt((56 + 49*sqrt(2) + sqrt(2*(3905+2744*sqrt(2))))/2) * ((7 + 2*sqrt(2) + sqrt(41 + 28*sqrt(2)))/2)^n / (8*Pi*n). - _Vaclav Kotesovec_, Nov 09 2014

%e G.f.: A(x) = 1 + 3*x + 17*x^2 + 111*x^3 + 805*x^4 + 6147*x^5 + 48641*x^6 +...

%e where the g.f. is given by the binomial series identity:

%e A(x) = 1/(1-2*x) + x/(1-2*x)^3 * (1 + 2*x) * (1 + 4*x)

%e + x^2/(1-2*x)^5 * (1 + 2^2*2*x + 4*x^2) * (1 + 2^2*4*x + 16*x^2)

%e + x^3/(1-2*x)^7 * (1 + 3^2*2*x + 3^2*4*x^2 + 8*x^3) * (1 + 3^2*4*x + 3^2*16*x^2 + 64*x^3)

%e + x^4/(1-2*x)^9 * (1 + 4^2*2*x + 6^2*4*x^2 + 4^2*8*x^3 + 16*x^4) * (1 + 4^2*4*x + 6^2*16*x^2 + 4^2*64*x^3 + 2561*x^4)

%e + x^5/(1-2*x)^11 * (1 + 5^2*2*x + 10^2*4*x^2 + 10^2*8*x^3 + 5^2*16*x^4 + 32*x^5) * (1 + 5^2*4*x + 10^2*16*x^2 + 10^2*64*x^3 + 5^2*256*x^4 + 1024*x^5) +...

%e equals the series

%e A(x) = 1/(1-x) + x/(1-x)^3 * (1 + x) * (2 + 4*x)

%e + x^2/(1-x)^5 * (1 + 2^2*x + x^2) * (4 + 2^2*2*4*x + 16*x^2)

%e + x^3/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3) * (8 + 3^2*4*4*x + 3^2*2*16*x^2 + 64*x^3)

%e + x^4/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (16 + 4^2*8*4*x + 6^2*4*16*x^2 + 4^2*2*64*x^3 + 256*x^4)

%e + x^5/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (32 + 5^2*16*4*x + 10^2*8*16*x^2 + 10^2*4*64*x^3 + 5^2*2*256*x^4 + 1024*x^5) +...

%e We can also express the g.f. by another binomial series identity:

%e A(x) = 1 + x*(2 + (1+4*x)) + x^2*(4 + 2^2*2*(1+4*x) + (1+2^2*4*x+16*x^2))

%e + x^3*(8 + 3^2*4*(1+4*x) + 3^2*2*(1+2^2*4*x+16*x^2) + (1+3^2*4*x+3^2*16*x^2+64*x^3))

%e + x^4*(16 + 4^2*8*(1+4*x) + 6^2*4*(1+2^2*4*x+16*x^2) + 4^2*2*(1+3^2*4*x+3^2*16*x^2+64*x^3) + (1+4^2*4*x+6^2*16*x^2+4^2*64*x^3+256*x^4))

%e + x^5*(32 + 5^2*16*(1+4*x) + 10^2*8*(1+2^2*4*x+16*x^2) + 10^2*4*(1+3^2*4*x+3^2*16*x^2+64*x^3) + 5^2*2*(1+4^2*4*x+6^2*16*x^2+4^2*64*x^3+256*x^4) + (1+5^2*4*x+10^2*16*x^2+10^2*64*x^3+5^2*256*x^4+1024*x^5)) +...

%e equals the series

%e A(x) = 1 + x*(1 + (2+4*x)) + x^2*(1 + 2^2*(2+4*x) + (4+2^2*2*4*x+16*x^2))

%e + x^3*(1 + 3^2*(2+4*x) + 3^2*(4+2^2*2*4*x+16*x^2) + (8+3^2*4*4*x+3^2*2*16*x^2+64*x^3))

%e + x^4*(1 + 4^2*(2+4*x) + 6^2*(4+2^2*2*4*x+16*x^2) + 4^2*(8+3^2*4*4*x+3^2*2*16*x^2+64*x^3) + (16+4^2*8*4*x+6^2*4*16*x^2+4^2*2*64*x^3+256*x^4))

%e + x^5*(1 + 5^2*(2+4*x) + 10^2*(4+2^2*2*4*x+16*x^2) + 10^2*(8+3^2*4*4*x+3^2*2*16*x^2+64*x^3) + 5^2*(16+4^2*8*4*x+6^2*4*16*x^2+4^2*2*64*x^3+256*x^4) + (32+5^2*16*4*x+10^2*8*26*x^2+10^2*4*64*x^3+5^2*2*256*x^4+1024*x^5)) +...

%t Table[Sum[4^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 2^j,{j,0,n-2*k}],{k,0,Floor[n/2]}],{n,0,20}] (* _Vaclav Kotesovec_, Nov 09 2014 *)

%o (PARI) /* By definition: */

%o {a(n,p,q)=local(A=1); A=sum(m=0, n, x^m/(1-p*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * p^k * x^k) * sum(k=0, m, binomial(m, k)^2 * q^k *x^k) +x*O(x^n)); polcoeff(A, n)}

%o for(n=0, 25, print1(a(n,2,4), ", "))

%o (PARI) /* By a binomial identity: */

%o {a(n,p,q)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2*p^(m-k)*q^k*x^k) * sum(k=0, m, binomial(m, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}

%o for(n=0, 25, print1(a(n,2,4), ", "))

%o (PARI) /* By a binomial identity: */

%o {a(n,p,q)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * p^(m-k)* sum(j=0, k, binomial(k, j)^2 * q^j * x^j)+x*O(x^n))), n)}

%o for(n=0, 25, print1(a(n,2,4), ", "))

%o (PARI) /* By a binomial identity: */

%o {a(n,p,q)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * p^(k-j) * q^j * x^j)+x*O(x^n))), n)}

%o for(n=0, 25, print1(a(n,2,4), ", "))

%o (PARI) /* Formula for a(n): */

%o {a(n,p,q)=sum(k=0, n\2, sum(j=0, n-2*k, q^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * p^j))}

%o for(n=0, 25, print1(a(n,2,4), ", "))

%Y Cf. A248053, A243948, A245929, A227845, A245925, A005836, A246510, A246423, A246455, A246056.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 08 2014