login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249923
E.g.f. A(x) satisfies: (A(x)^7 - 14*x)^2 = (2 - A(x)^2)^7.
2
1, 1, -1, -12, 45, 1920, -12285, -812160, 7372665, 675993600, -7946069625, -929719296000, 13417865324325, 1910208017203200, -32683269859651125, -5481709463273472000, 108469408821131840625, 20943691553556135936000, -470506033739324534576625, -102780474361885187112960000
OFFSET
0,4
COMMENTS
Limit n->infinity (|a(n)|/n!)^(1/n) = 7/8 * sqrt(11+5*sqrt(5)). - Vaclav Kotesovec, Nov 15 2014
LINKS
FORMULA
E.g.f.: (1 + 2*Series_Reversion(G(x)))^(1/2), where G(x) = ((1+2*x)^(7/2) - (1-2*x)^(7/2))/14 = x + Sum_{n>=1} x^(2*n+1)/(2*n+1)! * Product_{k=0..n-1} (3-4*k)*(5-4*k).
E.g.f. A(x) satisfies:
(1) A(x)^2 + A(-x)^2 = 2.
(2) A(x)^7 - A(-x)^7 = 14*x.
(3) (A(x) - A(-x))/2 = Series_Reversion(x + 2*x^3 - 4*x^5 + 8*x^7/7).
(4) x = (A(x)^7 - (2 - A(x)^2)^(7/2))/14.
EXAMPLE
E.g.f.: A(x) = 1 + x - x^2/2! - 12*x^3/3! + 45*x^4/4! + 1920*x^5/5! - 12285*x^6/6! - 812160*x^7/7! + 7372665*x^8/8! + 675993600*x^9/9! - 7946069625*x^10/10! +...
Related expansions.
A(x)^2 = 1 + 2*x - 30*x^3/3! + 4530*x^5/5! - 1914750*x^7/7! + 1589710050*x^9/9! - 2183722897950*x^11/11! +...
A(x)^7 = 1 + 7*x + 35*x^2/2! - 1995*x^4/4! + 523215*x^6/6! - 314976375*x^8/8! + 339403095675*x^10/10! +...
EXPLICIT FORMULA.
Let G(x) = ((1+2*x)^(7/2) - (1-2*x)^(7/2))/14, which begins
G(x) = x + 15*x^3/3! - 15*x^5/5! - 225*x^7/7! - 14175*x^9/9! - 2027025*x^11/11! - 516891375*x^13/13! +...+ [Product_{k=0..n-1} (3-4*k)*(5-4*k)]*x^(2*n+1)/(2*n+1)! +...
then (A(x)^2 - 1)/2 = Series_Reversion(G(x)).
A series bisection may be expressed by the series reversion given by:
Series_Reversion(x + 2*x^3 - 4*x^5 + 8*x^7/7) = x - 12*x^3/3! + 1920*x^5/5! - 812160*x^7/7! + 675993600*x^9/9! +...
MATHEMATICA
CoefficientList[Sqrt[1 + 2*InverseSeries[Series[((1+2*x)^(7/2) - (1-2*x)^(7/2))/14, {x, 0, 20}], x]], x] * Range[0, 20]! (* Vaclav Kotesovec, Nov 15 2014 *)
PROG
(PARI) /* Explicit formula: */
{a(n)=local(A, X=x+x^2*O(x^n), G=((1+2*X)^(7/2) - (1-2*X)^(7/2))/14);
A=(1 + 2*serreverse(G))^(1/2); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Formula using series expansion: */
{a(n)=local(A, G=x + sum(m=1, n\2+1, x^(2*m+1)/(2*m+1)!*prod(k=0, m-1, (3-4*k)*(5-4*k)) +x^2*O(x^n)));
A=sqrt(1 + 2*serreverse(G)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Alternating zero coefficients in A(x)^2 and A(x)^7: */
{a(n)=local(A=[1, 1], E=1, M); for(i=1, n, A=concat(A, 0); M=#A;
E=sum(m=0, M-1, A[m+1]*x^m/m!)+x*O(x^M);
A[M]=if(M%2==0, -(M-1)!*Vec(E^7/7)[M], -(M-1)!*Vec(E^2/2)[M])); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 15 2014
STATUS
approved