login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249922
E.g.f. satisfies: A(x) = x + 4*A(x)^5/5.
1
1, 96, 1161216, 111588212736, 41521527606214656, 42355944224989145726976, 96575619003620851215495069696, 429963927063544377213100737813282816, 3395036444630744502734855883444511190286336, 44244440869926546911112904419213680504885798240256
OFFSET
0,2
COMMENTS
A quadrisection of A249787.
FORMULA
E.g.f.: Series_Reversion(x - 4*x^5/5).
E.g.f.: Sum_{n>=0} x^(4*n+1)/(4*n+1)! * Product_{k=0..n-1} 4*(5*k+4)!/(5*k)!.
a(n) = Product_{k=0..n-1} 4*(5*k+4)!/(5*k)!.
a(n) = A249787(4*n+1).
For n>0, a(n) = 4^n * (5*n-1)! / ((n-1)! * 5^(n-1)). - Vaclav Kotesovec, Nov 15 2014
a(n) ~ 2^(2*n) * 5^(4*n+1/2) * n^(4*n) / exp(4*n). - Vaclav Kotesovec, Nov 15 2014
Recurrence: a(n)+(-2500*n^4+5000*n^3-3500*n^2+1000*n-96)*a(n-1) = 0, a(0) = 1. - Georg Fischer, May 29 2021
EXAMPLE
E.g.f.: A(x) = x + 96*x^5/5! + 1161216*x^9/9! + 111588212736*x^13/13! + 41521527606214656*x^17/17! + 42355944224989145726976*x^21/21! +...+ (4/5)^n * (5*n)!/n! * x^(4*n+1)/(4*n+1)! +...
MAPLE
rec:={a(n)+(sum([-96, 1000, -3500, 5000, -2500][i+1]*n^i, i=0..4)*a(n-1))=0, a(0)=1}; f:= gfun:-rectoproc(rec, a(n), remember): map(f, [$0..10]); # Georg Fischer, May 29 2021
MATHEMATICA
Join[{1}, Table[4^n*(5*n-1)!/((n-1)!*5^(n-1)), {n, 1, 10}]] (* Vaclav Kotesovec, Nov 15 2014 *)
PROG
(PARI) {a(n)=local(A, X=x+x^2*O(x^n)); A=serreverse(X - 4*x^5/5); n!*polcoeff(A, n)}
for(n=0, 15, print1(a(4*n+1), ", "))
CROSSREFS
Cf. A249787.
Sequence in context: A159416 A008702 A133402 * A163494 A117846 A058286
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 14 2014
EXTENSIONS
Offset changed from 1 to 0 by Georg Fischer, May 29 2021
STATUS
approved