login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368639
Number of lattice paths from (0,0) to (n,n) using steps (i,j) with i,j>=0 and gcd(i,j)=1.
2
1, 3, 17, 111, 757, 5321, 38131, 276913, 2031075, 15011373, 111618559, 834026649, 6257264575, 47105424671, 355648865425, 2691925368489, 20420008516447, 155197818599687, 1181563534890855, 9009291052956319, 68788955737056469, 525876413869285467
OFFSET
0,2
LINKS
FORMULA
a(n) = A362242(2n,n).
a(n) mod 2 = 1.
a(n) ~ c * d^n / sqrt(n), where d = 7.83243076186533979978704688382432500791136... and c = 0.4087157525553882018687231317140076547941617894... - Vaclav Kotesovec, Jan 13 2024
EXAMPLE
a(1) = 3: (00)(10)(11), (00)(01)(11), (00)(11).
MAPLE
b:= proc(n, k) option remember; `if`(min(n, k)=0, 1, add(add(
`if`(igcd(i, j)=1, b(n-i, k-j), 0), j=0..k), i=0..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..21);
CROSSREFS
Cf. A362242.
Sequence in context: A295808 A215048 A346921 * A119259 A249921 A174404
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 01 2024
STATUS
approved