Oops something went wrong! Either the site is offline or an unhandled error occurred. We apologize and have logged the error. Please try your request again or if you know who your site administrator is let them know too.
frankdenneman Follow Frank Denneman is the Chief Technologist for AI at VMware by Broadcom. He is an author of the vSphere host and clustering deep dive series, as well as a podcast host for the Unexplored Territory podcast. You can follow him on Twitter @frankdenneman Processor speed and core counts are important factors when designing a new server platform. However with virtualization platforms,
Last week during a casual conversation I overheard a colleague saying: "The Linux network stack is slow! You can't expect it to do more than 50 thousand packets per second per core!" That got me thinking. While I agree that 50kpps per core is probably the limit for any practical application, what is the Linux networking stack capable of? Let's rephrase that to make it more fun: On Linux, how hard
1. Silk Weaver: A Scalable Data Processing Platform JNuma library ï¬ Java/Scalaã§NUMA aware ã¢ã¯ã»ã¹ãå®ç¾ããããã®ã©ã¤ãã©ãª ï¬ 2012å¹´11æã«ä½æã»å ¬éæ¸ã¿ ï¬ https://github.com/xerial/jnuma ï¬ JavaããJNIçµç±ã§NUMA APIãå¼ã³åºã ï¬ æ©è½ ï¬ ç¹å®ã®NUMA node ï¼ã¡ã¢ãªï¼ã§ãããã¡ãç¢ºä¿ ï¬ GCã®ç®¡ç対象å¤é åãªã®ã§ãNuma.freeãå®è¡ããç¬éã«è§£æ¾ããã (JVMãã¡ã¢ãªãé£ãå°½ããã®ãé²ãï¼ ï¬ Threadãç¹å®ã®CPU(s)ã«åºå®ãã ï¬ Javaã«ã¯ãªãæ©è½ 1 2. Silk Weaver: A Scalable Data Processing Platform Distance and CPU affinity o
What starts like a joke is really a serious post about large distributed systems. This is what we run at meltwater - and while there is a lot of fun designing and administering these systems, we run into odd problems from time to time. In this case: some well-meant Red Hat memory optimisations interfering with Riak performance. There is a lot of talk around âBig Dataâ in the industry - and here at
Intelï¼Haswellä¸ä»£ã®ãµã¼ãã¼åãæ°CPUãXeon E5 v3ããã¡ããªã¼ãçºè¡¨ãæ大CPUã³ã¢æ°ã¯18åºã« ã©ã¤ã¿ã¼ï¼å¡©ç°ç´³äº Intelã®è³æã«ãã£ãXeon E5 v3ã®ãã¤åç 2014å¹´9æ9æ¥1ï¼00ï¼Intelã¯ï¼Haswellä¸ä»£ã®ãã¤ã¯ãã¢ã¼ããã¯ãã£ãæ¡ç¨ãããµã¼ãã¼ï¼ã¯ã¼ã¯ã¹ãã¼ã·ã§ã³åãCPUãXeon E5 v3ããã¡ããªã¼è¨32製åãçºè¡¨ãããéçºã³ã¼ããã¼ã ãHaswell-EPãã¨ãå¼ã°ãã¦ãããã®ã§ï¼å èµããCPUã³ã¢æ°ãæ大18åºã«éããã»ãï¼DDR4ã¡ã¢ãªã«å¯¾å¿ããã¨ãã£ãç¹å¾´ãåããã Xeonãã©ã³ãã®CPUã¯ï¼ã²ã¼ãã¼ãç©æ¥µçã«é¸ã¶ãããªè£½åã§ã¯ãªããï¼2014å¹´8æ30æ¥ã«çºè¡¨ããããã¤ã¨ã³ããã¹ã¯ãããPCç¨CPUãCore i7-5000çªå°ãï¼éçºã³ã¼ããã¼ã Haswell-Eï¼ä»¥ä¸åï¼ã¨å ±éããé¨åãããï¼ããã§ã¯æ¦è¦ãã¾
ãªããDMMããweb3ã«åå ¥ããã®ããSeamoon Protocolããç®æãæ°ããªã¨ã³ã¿ã¡ä½é¨ã®æªæ¥ã¨ã¯
This page details system configurations that affect MongoDB, especially when running in production. MongoDB Atlas is a cloud-hosted database-as-a-service. MongoDB Cloud Manager, a hosted service, and Ops Manager, an on-premise solution, provide monitoring, backup, and automation of MongoDB instances. For documentation, see Atlas documentation, the MongoDB Cloud Manager documentation and Ops Manage
This document discusses various techniques for optimizing KVM performance on Linux systems. It covers CPU and memory optimization through techniques like vCPU pinning, NUMA affinity, transparent huge pages, KSM, and virtio_balloon. For networking, it discusses vhost-net, interrupt handling using MSI/MSI-X, and NAPI. It also covers block device optimization through I/O scheduling, cache mode, and a
2. ã¯ããã¾ãã¦ï¼ ⢠æ°æ½çä¸æ¡å¸ã«ããå°å ISP æéä¼ç¤¾é座å ã§ãµã¼ã管çãããã ã¯ã¼ã¯ç®¡çããã¦ãã¾ã ⢠å¼ç¤¾ã§ã¯ä¸æµ ISP(OCN ããã¨æ°æ½çå ã® ISP) ã Echigo-IX(æ°æ½ç å ã®å°å IX) ã¨ã®æ¥ç¶ã« Linux(Vyatta Core) ã使ã£ã¦ BGP æ¥ç¶ã ãã¦ãã¾ã ⢠2010 å¹´é ãã Linux ã«ã¼ãã«ã®ãã±ãã転éå¦çã«ã¤ãã¦èª¿ã¹ InternetWeek ã§çºè¡¨ããããã¦ãã¾ãã ⢠趣å³ã§ã¯ IETF ã§æ¨æºåãé²ãããã¦ãã MAP(Mapping of Address and Port with Encapsulation) ã¨ãããããã³ã«ã Linux ã«ã¼ãã«ã«å®è£ ã Vyatta Core ã«çµã¿è¾¼ã¿ ASAMAP ã¨ããåå㧠ãªã¼ãã³ã½ã¼ã¹ã§å ¬éããããã¦ãã¾ã 2 3. ASAMAPï¼ â¢ IPv4 over
cpuspeed ããªã³ã ã¨.... â ã¯ããã¯ã³ (@hasegaw) 2014, 5æ 29 ããã«ã¦ã§ã¢ã®ã¹ã«ã¼ãããã測ããã¨æã£ãã®ã§ãã cpuspeed ãªã©ã®è¨å®ããããããã£ã¦ãã¾ããã§ããããã çµé¨ä¸ããã¥ã¼ãã³ã°éç¨ã§ããããããªããããªãã©ã¡ã¼ã¿ãæãåºãã¦ã¿ã¾ãã ãã¯ã¼ããã¸ã¡ã³ãã«é¢ããè¨å®ã¯ãªãã«ãã UEFIãBIOSã«ã¯ãã¯ã¼ããã¸ã¡ã³ãè¨å®ãããã¾ãããããããç¡å¹ã«ããã¨ããã»ããµãªã©ãç¡æ¡ä»¶ã§å®æ ¼ã¯ããã¯ã§èµ°ãç¶ãã¾ãããã¼ã¯æ§è½ãé«ãããç¬çºåãä¸ããããã«ã¯ãã¯ã¼ããã¸ã¡ã³ãã¯ãªãã«ãã¾ããå½ç¶ãªãããã¼ã¹ã®æ¶è²»é»åããã¡ã³ã®é¨é³ã¯å¢ãã¾ããããããã«ãããããã¼ã¯æ§è½ã®åä¸ãè¦è¾¼ãã¾ãã Hyper Threading ã¯ã¬ã¤ãã³ã·ã¼ã¨ã¹ã«ã¼ãããã®ãã¬ã¼ããªã Hyper Threadingã¯ããã¶ããã³ã¢å ã§ãã¤ãã©ã¤ã³ãåãåããã
ååãNUMAã¢ã¼ããã¯ãã£ããããã¯ã¼ã¯æ§è½ã«ä¸ããå½±é¿ã«ã¤ãã¦ã®æè¡çãªèæ¯ã説æããã (ååè¨äº) NUMAã¢ã¼ããã¯ãã£ã¨ãããã¯ã¼ã¯æ§è½ï¼ï¼ï¼ï¼èª¬æç·¨ - Interconnect Your Future - InfiniBand and RoCE æ¬ç¨¿ã§ã¯ãå®éã«Linuxç°å¢ã§ãããã¯ã¼ã¯æ§è½ã測å®ããNUMAãä¸ããå½±é¿ã«ã¤ãã¦ã®äºä¾ã¨ãã¦ãã¦ãç´¹ä»ãããã æ¬ç¨¿ã§ã¯ãæçµçã«ã¯ä¸è¨æ¸¬å®ä¾ãã¾ã¨ãã¦ãããNUMAæ§æãç°ãªãå ´åãæ§è½ãå ¨ãç°ãªã£ã¦ãã¾ãã極端ãªè©±ã40GbE NICãªã®ã«4-5Gbpsããåºãªããã¨ã«ãªã£ã¦ãã¾ããå®éã«ã¯æ§è½åºã¾ãã注æã NUMAæ§æä¸é ãæ§æã§ã®iperfæ§è½ï¼1ããã»ã¹(1ã³ã¢) 2.00Gbpsã12ããã»ã¹(6ã³ã¢) 4.84Gbps NUMAæ§æä¸è¿ãæ§æã§ã®iperfæ§è½ï¼1ããã»ã¹(1ã³ã¢) 14.7Gbpsã12ããã»
NUMA(Non-Uniform Memory Access)ã¨ã¯ Non-uniform memory access - Wikipedia, the free encyclopedia NUMA - Wikipedia NUMAï¼Non-Uniform Memory Accessãããï¼ã¨ã¯ãå ±æã¡ã¢ãªåãã«ãããã»ããµã³ã³ãã¥ã¼ã¿ã·ã¹ãã ã®ã¢ã¼ããã¯ãã£ã®ã²ã¨ã¤ã§ãè¤æ°ããã»ããµãå ±æããã¡ã¤ã³ã¡ã¢ãªã¸ã®ã¢ã¯ã»ã¹ã³ã¹ãããã¡ã¢ãªé åã¨ããã»ããµã«ä¾åãã¦åä¸ã§ãªãã¢ã¼ããã¯ãã£ã§ããã è¤æ°CPUãããå ´åãè¿ãã¡ã¢ãªã¨é ãã¡ã¢ãªãæ§æä¸åå¨ãããã¼ã¿ãç½®ãããå ´æã«ãã£ã¦ãæ§è½ã«å·®ãåºã¦ãã¾ãã¢ã¼ããã¯ãã£ã§ããã ãããã¯ã¼ã¯æ§è½ã測å®ããå ´åããNUMAæ§æä¸ä¸å©ãªç¶æ ã§æ§è½æ¸¬å®ããã¦ãã¾ãã¨ãæããããªæ§è½ãåºãªãå ´åãããããã注æãå¿ è¦ã§ãããæ¬ç¨¿ã§ã¯ãNUMAåã³CPU
Fusion-io ConfidentialâCopyright © 2013 Fusion-io, Inc. All rights reserved. Fusion-io ConfidentialâCopyright © 2013 Fusion-io, Inc. All rights reserved. High Performance I/O with NUMA Systems in Linux Lance Shelton How prevalent is NUMA? ⸠All major vendors ⢠HP, Dell, IBM, Cisco, SuperMicro, Hitachi, etc. ⸠As small as 1U ⸠2, 4, and 8 socket systems ⸠2 to 10 cores per socket ⸠Number of cores
1. 第3ã»ãã·ã§ã³ ãã¼ãã¦ã§ã¢è¨è¨ã®åæ qpstudy 2014.04 -éºããéã®æ©ãæ¹ãã¡ãã£ã¨ã ãæãã¦ããã- Apr 19, 2014 @ DWANGO ã»ããã¼ã«ã¼ã Takeshi HASEGAWA (@hasegaw) 2. @hasegaw is 誰 é·è°·å·âç (HASEGAWA Takeshi) twitter: @hasegaw åè·æ代 ã»SEã¨ãã¦ã·ã¹ãã æ§ç¯ã客å ã®ã·ã¹ãã éç¨ãææ¡ ã»æ°ä»ãããããªã»ã¼ã«ã¹â¼PMæ å½SE ï¼ãã£ãããã¶ã¤ã³ãå·¥æ°ï¼å°å ¥ç©åè¦ç©ããã æ§ç¯ããã¸ã§ã¯ãã®ç®¡çãä¿å®çã®åãåãã対å¿ï¼ ç¾è· ã»ãã©ãã·ã¥ã軸ã¨ããã¢ããªã±ã¼ã·ã§ã³é«éåãæ¯æ´ãã ã»ã¼ã«ã¹ã¨ã³ã¸ãã¢
GC-stall and Page Scan Attacks by Linux The document discusses GC attacks and page scan attacks by the Linux kernel that can cause long GC pauses. It provides examples of GC attacks due to I/O starvation and memory starvation. Solutions proposed include configuring Linux to flush disk writes more frequently and protect JVM heap memory from swapping. Page scan attacks are caused by Transparent Huge
ãã¥ã¢ã«ã½ã±ãããã¤ã¾ãCPUãï¼åæè¼ãããã¶ã¼ãã¼ãéå®ã§èªä½PCã楽ããçè ã®æ§åãæãã¦ããã¾ãã ä»åã¯ãPCã®å²ãè¾¼ã¿ï¼Interruptï¼å¦çã«ä»ãã¦ãåºæ¬çãªæãã Dual Socket ã§ã®å²ãè¾¼ã¿å¦çã¾ã§ãç°¡åã«ã¾ã¨ãã¦ã¿ã¾ããï¼åºæ¬çã«ã¯èªåç¨ã¡ã¢ã§ãç¾å¨ç·¨éä¸ã§ãï¼ çè ã®ç¥ãå²ãè¾¼ã¿å¦çã«ã¯å¤§ããåãã¦ï¼ã¿ã¤ãï¼ã½ããå²ãè¾¼ã¿ããã¼ãå²ãè¾¼ã¿ãNMI(å¼·å¶å²ãè¾¼ã¿)ï¼ãæãã¾ãããä»åã®è¨äºã®å¯¾è±¡ã¯I/Oããã¤ã¹ã®ãã¼ãå²ãè¾¼ã¿ã«ä»ãã¦ã§ããä½è«ã§ããã½ããå²ãè¾¼ã¿ã¯ä¾å¤å¦çã¨ãè¨ãã代表çãªãã®ã«NullPointerExceptionãªã©ãæãã¾ãã çºç«¯ã¯ å æ¥ã®è¨äº ã§ãã ä¾ãã°ä¸å³ã®æ§ãªNUMAæ§æã§CPU1ã§åä½ãã¦ããã¢ããªãCPU2ã®I/Oãã¹ã«æ¥ç¶ãããããã¤ã¹ãå©ç¨ããå ´åãå²ãè¾¼ã¿ã®çµè·¯ããã©ã¤ãã¨ã®é¢ä¿ã«ä»ãã¦è©³ãã調ã¹ããã¨æã£ã訳ã§
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}