You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Open-sourcing F14 for faster, more memory-efficient hash tables Hash tables provide a fast way to maintain a set of keys or map keys to values, even if the keys are objects, like strings. They are such a ubiquitous tool in computer science that even incremental improvements can have a large impact. The potential for optimization led to a proliferation of hash table implementations inside Facebook,
Hash table is probably the most commonly used data structure in software industry. Most implementations focus on its speed instead of memory usage, yet small memory footprint has significant impact on large in-memory tables and database hash indexes. In this post, Iâll provide a step by step guide for writing a modern hash table that optimize for both speed and memory efficiency. Iâll also give so
Lucene/Solr Advent Calendar 2014 22æ¥ãã§ãã 第15åSolråå¼·ä¼ã§ããã軽ãLucene FST ã®ç´¹ä»ãããã®ã§ãããèªåãã¾ã ã¾ã åå¼·ä¸ã§ããã¨ãããã¨ã§ Lucene éçºè ã® Mike ããã«ãã ããã¨ã§ãããã°ã®FST é¢é£ã®ã¨ã³ããªã翻訳ãã¦ããã§ããï¼ãã¨ã¡ã¼ã«ãéã£ã¦ã¿ãã¨ãããããããï¼ãã¨å¿«è«¾ãã¦ããããã®ã§ãããã«æ²è¼ãã¾ãã â- é¢é£ãã話é¡ã§ããã Golang ã§æ¸ãããå½¢æ ç´ è§£æå¨ kagome ãä½ã£ã¦ãã @ikawaha ããããLucene ã絡ãã¦ç«ã«ããããï¼ãããããªãï¼ FST ã®è§£èª¬ãæ¸ãã¦ãã ããã¾ããããããã¨ããããã¨ãï¼ï¼Ïï¼ï¼ï¼ã¢ã«ã´ãªãºã ã®èª¬æãã Double Array ã¨ã®æ¯è¼ã¾ã§è³ããå°½ããããªã®ã§ãããã¦ã©ããã Luceneã§ä½¿ããã¦ãFSTãå®è£ ãã¦ã¿ãï¼æ£è¦è¡¨ç¾ãããï¼VM
ããã«ã¡ã¯ãandoã§ãã ã¤ãã«Java8ããªãªã¼ã¹ãããã®ã§ãã£ããã¤ã³ã¹ãã¼ã«ãã¦ã¿ã¾ããã Java8ã«ãªã£ã¦ã©ã ãå¼ãå§ããå¤ãã®æ©è½ã追å ãããã®ã§ãããæ¢åæ©è½ã«ã¤ãã¦ãæ§è½æ¹åãè¡ããã¦ãã¾ãã 人æ°ããããããªæ°æ©è½ã®ç´¹ä»ã¯ä»ã®äººã«ãä»»ããã¦ãä»åã¯HashMapã®å¤æ´ç¹ã«ã¤ãã¦ç¢ºèªãããã¨æãã¾ãã ã¯ããã¦æ¢åã®ããã°ã©ã ã¯Java8ã§å®è¡ããã ãã§ããã®æ©æµã享åã§ããã®ã§ããããã java.util.HashMap HashMapã¨ããã°ä½¿ç¨é »åº¦1ã2ãäºãã³ã¬ã¯ã·ã§ã³ã¯ã©ã¹ã§ãã¼ã¿ã®æ¤ç´¢ã追å ãO(1)ã§è¡ãã è¾æ¸çã«ä½¿ããäºããç°¡æçãªDTOããã£ãã·ã¥ããã¼ã¿ãã¼ã¹ã®ã¬ã³ã¼ãæ§é ãããã«ã¯Listã§ããã¨ããã§ããæ°å¤ããã¼ã«ãã¦ä½¿ãå µãããã¨ãããããè¯ããæªããè²ã 使ãã¾ãã ãããéããªãã®ã§ããã°ãæ¢åã®ããã°ã©ã ãéããªãã¯ããã¨ãããã¨ã§ãã£
ConcurrentHashMapã使ãã¨ãã®æ³¨æç¹ ã¿ã¤ãã«ã®éãã§ãã ConcurrentHashMapã¯åæãåãã¤ã¤ãããã©ã¼ãã³ã¹ãåªããã¨ã¦ãåªç§ãªãã¤ã§ãæè¿Webã¢ããªã±ã¼ã·ã§ã³ã§ããã£ãã·ã¥ã¿ãããªãã®ãä½ãã¨ãã«ä½¿ãã¾ããã ã¨ã¯ããåæãåãã¨ã¯ãã£ã¦ã以ä¸ã®ãããªãã¼ã®åå¨ã確èªãã¦ãputãããããªè¤åã¢ã¯ã·ã§ã³ã®å¼ã³åºã(ããããcheck-then-act)ã§ã¯åæããã¾ããã(å¥ã«ããã¯ãå¾æ¥ã®HahMapã¨ãCollections.syncronizedMapã¨ãã§ãåãã§ã) // atomicã§ã¯ãªãæä½ã if(!map.containsKey(key)) { map.put(key, value); } 以ä¸ãå®è¨¼ã³ã¼ãã§ãå®è¡ããã¨é«ã確çã§è¤æ°ã¹ã¬ããã§åä¸ãã¼ã¸ã®putãè¡ãã¾ãã (ä»åã®ã±ã¼ã¹ã ã¨ãã¾ãåé¡ã«ãªããªãã§ãããvalueã
3 billion items in Java Map with 16 GB RAM One rainy evening I meditated about memory managment in Java and how effectively Java collections utilise memory. I made simple experiment, how much entries can I insert into Java Map with 16 GB of RAM? Goal of this experiment is to investigate internal overhead of collections. So I decided to use small keys and small values. All tests were made on Linux
A Random Walk Through Geek-Space Brain dumps and other ramblings from Sebastian Sylvan Robin Hood Hashing should be your default Hash Table implementation 8/May 2013 Thereâs a neat variation on open-addressing based hash tables called Robin Hood hashing. This technique isnât very well-known, but it makes a huge practical difference because it both improves performance and space utilization compare
IF YOU ARE LOOKING for the drop-in replacement for java.util.Hashtable, it's in the lib directory, lib/java_util_hashtable.jar. It needs to be in your bootclasspath. Example: java -Xbootclasspath/p:lib/java_util_hashtable.jar my_java_app_goes_here --- A collection of Concurrent and Highly Scalable Utilities. These are intended as direct replacements for the java.util.* or java.util.concurrent.* co
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}