æ¬æ¸ã¯ãLydia Hallie æ° ã¨ Addy Osmani æ°ãã«ãã Learning Patterns (https://www.patterns.dev/) ã®æ¥æ¬èªè¨³ã§ããåèã¯å¤§ãã 3 ã¤ã®ã»ã¯ã·ã§ã³ã«åããã¦ãã¾ãããæ¬æ¸ã¯ããã®æåã®ã»ã¯ã·ã§ã³ã§ãã Design Patterns ã訳ãããã®ã¨ãªãã¾ãã
ãã¤ã¯ããµã¼ãã¹ã«ã¤ãã¦ãååã¯ãã®ã¢ã¼ããã¯ãã£ã®æ¦è¦ããå©ç¹ãããã¦èª²é¡ã«ã¤ãã¦ã¾ã¨ãã¾ããã第2åã®ä»åã¯ããã¤ã¯ããµã¼ãã¹ãæ§æããåå¥ã®è¦ç´ ï¼ãã¶ã¤ã³ãã¿ã¼ã³ï¼ãä¸æã«èª¬æãã¾ãããã¤ã¯ããµã¼ãã¹ãå¦ã¶ä¸ã§é¿ãã¦éããªãç¨èªãã¡ããã²ã¨ã¤ã²ã¨ã¤ãåãããããä¸å¯§ã«è§£èª¬ãã¾ãããããã«ããã¤ã¯ããµã¼ãã¹ãæã¤ã©ã®å©ç¹ã«çµã³ä»ãããã»ããã§è§£èª¬ãããã¨ã«ãããåãªãç¥èã®åæãé¿ããã¤ã¡ã¼ã¸ããããæ§æãã¨ã£ã¦ãã¾ããç´¹ä»ãã¦ãããã®ã¯ããããç¹å®ã®è£½åãªã©ã«ä¾åããªãæ ¸ã¨ãªãè¦ç´ ã§ãã®ã§ãã¨ã³ã¸ãã¢ã®æ¹ããã¸ãã¹ãµã¤ãã®æ¹åãããé·ãå½¹ç«ã¤ç¥èã¨ãªãã¯ãã§ãã ååè¨äºï¼ãããªãåããï¼ ãã¤ã¯ããµã¼ãã¹ï¼å ¥éç·¨ï¼ï½ã¢ããªã¹ã¨æ¯è¼ããç¹å¾´ãå©ç¹ã¨èª²é¡ ãã¤ã¯ããµã¼ãã¹ã¯ãè¤æ°ã®ãã¶ã¤ã³ãã¿ã¼ã³ã®éåä½ã å ¥éç·¨ã§è§£èª¬ãããããªãã¤ã¯ããµã¼ãã¹ãæ§æãããã®å©ç¹ãå®ç¾ããããã«ã¯ãã²
ã½ããã¦ã§ã¢ã®ä¸çã«ã¯ãæªãæ¹ãè¯ããååã¨ããæåãªã¨ãã»ã¤ãããããã¬ã¤ã«ã¬ã¤ã¤åããããä¸è²«æ§ã®ããè¯ããã¶ã¤ã³ããããä¸è¦ææãã£ã½ãæªããã¶ã¤ã³ã®ã»ããå®ã¯è¯ãã¨ããããã¨ãã話ã ããã®é説çãªãã¶ã¤ã³ååãåã¯èº«ããã£ã¦ä½é¨ãããã¨ããããããã«ã¤ãã¦ã¡ãã£ã¨æ¸ãã¦ã¿ããã¨æãã åã¯lldã¨ãããªã³ã«ã®ç¾è¡ãã¼ã¸ã§ã³ã®ãªãªã¸ãã«ä½è ã ããªã³ã«ã¨ããã®ã¯ã³ã³ãã¤ã©ã¨çµã¿åããã¦ä½¿ããã®ã§ãå®è¡ãã¡ã¤ã«ãDLLãä½ãã®ã«ä½¿ç¨ããããlldã¯ãããã¯ãã¨ãã¦ã¯ããªãæåãã¦ãã¦ãæ¨æºã®ã·ã¹ãã ãªã³ã«ã¨ãã¦æ¡ç¨ãã¦ããOSãããã¤ããã£ãããGoogleãFacebookãªã©çãç¥ã£ã¦ãããããªå¤§è¦æ¨¡ãµã¤ãã®ä¸ã§åºã使ããã¦ãããããã ç¾å¨ã®lldã¯2ä¸ä»£ç®ã§ã第1ä¸ä»£ã®lldã¯åãããã¸ã§ã¯ãã«åå ããåããåå¨ãã¦ããã®ã ãã©ãæ°å¹´åã«ãããæ¨ã¦ã¦ä¸ããæ¸ãç´ãã¨ãããã¨ã«ãªã£
社å ã¤ãã³ãã§ç»å£ããéã®ã¹ã©ã¤ãã§ããï½¢ã¦ã¼ã¶ã¼ã¤ã³ã¿ã¼ãã§ã¤ã¹è§£åå¦ï½£ã®æ¹è¨çã主ã«ãUIãã¶ã¤ã³ã«ããã¦æ¤è¨ããæ¹ãããï¼ãã¹ãèãæ¹ã¨ãããã®ãç°¡åã«ãç´¹ä»ãã¾ããã
ãµã¼ãã¬ã¹ã³ã³ãã¥ã¼ãã£ã³ã°ã¯æ°ããã·ã¹ãã éçºææ³ã§ãããServerlessconf Tokyo 2017ã§ç´¹ä»ããããã¹ã±ã¼ã©ãã«ã§å ç¢ãã¤é«æ§è½ãªã¢ããªã±ã¼ã·ã§ã³ã®æ§ç¯ã«å½¹ç«ã¤6種é¡ã®ãã¶ã¤ã³ãã¿ã¼ã³ãç´¹ä»ããã 2017å¹´11æ2æ¥ã3æ¥ã®2æ¥éãæ±äº¬é½å ã§ãµã¼ãã¬ã¹ã³ã³ãã¥ã¼ãã£ã³ã°ã®ã¤ãã³ããServerlessconf Tokyo 2017ããéå¬ããã¾ããã ãµã¼ãã¬ã¹ã³ã³ãã¥ã¼ãã£ã³ã°ãããã¯ãµã¼ãã¬ã¹ã¢ã¼ããã¯ãã£ã¨å¼ã°ããã¢ããªã±ã¼ã·ã§ã³å®è¡ç°å¢ã¯ãä¸è¬ã«ãµã¼ãã®ãã¨ãæèããã«ã¢ããªã±ã¼ã·ã§ã³ãå®è¡ã§ããç°å¢ã®ãã¨ãæãã¾ãã ãã®ãµã¼ãã¬ã¹ã³ã³ãã¥ã¼ãã£ã³ã°ç°å¢ã®å®è£ ã¨ãã¦ä¸è¬çãªã®ãããããããã¢ããªã±ã¼ã·ã§ã³ã¨ãã¦å®è¡ãããã³ã¼ããé¢æ°ã¨ãã¦ç»é²ãã¦ããã¨ãæå®ãããã¤ãã³ãã«ãã£ã¦èªåçã«é¢æ°ãå¼ã³åºããã¦å®è¡ãããã¨ãããããããFunction-as-
StackGANã«ãããã©ã³ãã®é¬éè¡ å³1. ä¸å¤®ãé¬éãããã©ã³ã è¿æ³ å³2. ççã®ä¸æãæ¾ã¨ãã¨ããã«ãªãªã¹ããããï¼å ¬å¼çµµããï¼ãã°ã©ã³ãã«ã¼ãã¡ã³ã¿ã¸ã¼ã¨ããã¹ããã®ã²ã¼ã ã§ã«ãªãªã¹ããã¨ãããã£ã©ã¯ã¿ã¼ããã¾ãããã¨ã¯å¤©æé¬éè¡å¸«ã§ãèªå·±ã®æ§å¥ãé¬éè¡ã§ç·ãã女ã«å¤ãã天æã§ãããããªå½¼ï¼å½¼å¥³ï¼ï¼ãççã®ä¸æã ã¼ï¼ã£ã¦ãããã§ããããã£ãããã§ããã ãã¾ãã«ãä»ã¾ã§ã®ä¸å¯è½ãæéãç¶ããDeep Learningãèªåã§è¨ãã¨çã ç§å¦ã¨ãã¦ã®æ©æ¢°å¦ç¿ãé¶è½ãããã§ãããã¾ã Deep Learningã¯ä½ç³»åãããç¥æµã®éåä½ã¨ãã¦ã®æ£ããç§å¦ã®æ®µéã«ã¯ãã©ãçãã¦ããªãããã«æãã¾ããã©ã¡ããã¨è¨ãã¨é¬éè¡ã«è¿ãæããã Deep Learningã¯ããã¤ãã¾ã è¦ã¬ççã¸ã¨äººé¡ãå°ãã¦ããããã§ãããããå人ãæå¾ ãã¦ããã¾ãã ã¢ããã¼ã·ã§ã³ æ¥æ¬èªã®ãã©ã³ããä½æãã
æ¯æããã¶ã¤ãã¼ã¯ç®ãè¦ããã¨ãåãã§èªåã®è£½åã«åããããã¾ããããããã¸ã¿ã«è£½åã§ãã£ã¦ãç©ççãªè£½åã§ãã£ã¦ãããã¶ã¤ãã¼ã¯å¿ã®ä¸ã§ã人ã ãèªåã®è£½åã使ããããããã«ãªãã楽ããã§ä½¿ãããã«ãªãã¨ä¿¡ãã¦ããã®ã§ãã ããã¯ããä¸è¬è«ããããã¾ãããããããç§ãã¡ã¯ãã¶ã¤ãã¼ã¨ãã¦ãèªç¶ã¨ èªåãåãçµãã§ããåããã¸ã§ã¯ããæé«ã®ãã®ã«ã ãé©æ°çãªãã®ã«ãã¦ãããã¦ä½ãããéããããããããã¨èããå¾åãããã¾ãã ãããç§ã®è£½åã¯ç´ æ´ãããç©ã«ãªãã¯ãã ãæ©è½ããªãã·ã§ã³ãè¨å®ãå å®ãã¦ãããã¿ããªãæ¯æ¥ãã®è£½åã使ããæç¨ããããã«ãªãã ããã â ãããã¶ã¤ãã¼ ããã§å°ãæå¤ãªäºå®ããæãã¾ãããã人ã ã¯è£½åã使ç¨ãã¨ã«ãã¾ãèå³ã¯ããã¾ãããã¦ã¼ã¶ãã¤ã³ã¿ã¼ãã§ã¼ã¹ãæä½ããããã¤ã¾ã¿ãåããããã¬ãã¼ãå¼ãããããã¿ã³ãã¿ãããããããã®ã¯ãã¹ã¦æéã®ç¡é§ã§ããããã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}