æè¿KADOKAWAã»DWANGOãã«ãã«ã¯ã«ãªãã¨ãããã¥ã¼ã¹ãããã¾ãã
KADOKAWAã¨ãã¯ã³ã´ã®çµå¶çµ±åãå å¤ã«å¼·ã示ãããã両社ã®é³ãçµã¿åãããã¨ããããã«ãï¼KADOKAWAã®KAããããï¼ãã¯ã³ã´ã®ãããã«ãï¼KADOKAWAã®KAããã¯ãï¼ãã¯ã³ã´ã®ã¯ã«ãªã
ãã®ãã¥ã¼ã¹ãã¿ã¦ä»¥ä¸ã®ãããª2ã¤ã®åé¡ãèãã¦ã¿ãã®ã§ã解ãã¦ã¿ã¾ã
æåå"ã«ãã«ã¯ãã¯ã³ã´"ãã©ã³ãã ã«ä¸¦ã³æ¿ããæããã®æååä¸ã«"ã«ãã«ã¯"ãé£ç¶ãã¦å«ã¾ãã確çãçãã
— ç¡éç¿(id:sucrose)@17æç
(@Scaled_Wurm) 2015, 5æ 28
"ã«ãã«ã¯ãã¯ã³ã´"ã®ããããã®æåãæ¸ããã8æã®ã«ã¼ããããã
ã«ã¼ããã·ã£ããã«ãã¦1æå¼ãå
ã«æ»ãæé ã8åç¹°ãè¿ãã
å¼ãã8æã®ã«ã¼ãã®æåãé çªã«ä¸¦ã¹ãæã«"ã«ãã«ã¯"ã¨ããæåãé£ç¶ãã¦å«ã¾ãã確çãçãã
— ç¡éç¿(id:sucrose)@17æç
(@Scaled_Wurm) 2015, 5æ 28
é復å æ½åºç
æåå"ã«ãã«ã¯ãã¯ã³ã´"ãã©ã³ãã ã«ä¸¦ã³æ¿ããæããã®æååä¸ã«"ã«ãã«ã¯"ãé£ç¶ãã¦å«ã¾ãã確çãçãã
— ç¡éç¿(id:sucrose)@17æç
(@Scaled_Wurm) 2015, 5æ 28
"ã«ãã«ã¯ãã¯ã³ã´"ã®ããããã®æåãã«ã¼ãã«ãã¦ã·ã£ããã«ãããã¨ã«ä½æãåãåºãã¦"ã«ãã«ã¯"ã¨ããæåãé£ç¶ãã¦åºã¦ãã確çãèãã¦ã¿ã¾ã
\(n\)æåãåºããæã«"ã«ãã«ã¯"ã¨ããæåãé£ç¶ãã¦ã\(P(n)\)ã¨ãã¾ã
\(n \le 3\)ã§ã¯"ã«ãã«ã¯"ãã§ããªãã®ã§\(4 \le n \le 8\)ã«ã¤ãã¦èãã¾ã
解æ³1
ã¾ãã¯ä¸å¦æ ¡ã§ç¿ã£ããããªåºæ¬çãªè§£æ³ã§ããã¾ã
ã¾ãæåã®ãã¹ã¦ã®ä¸¦ã¹æ¹ã¯\(\frac{8!}{(8-n)!}\)éãã§ã
次ã«"ã«ãã«ã¯"ãå«ãå ´åãèãã¾ã
"ã«ãã«ã¯"ãä¸ã¤ã®ã¾ã¨ã¾ãã¨ãã¦å¿
ãå«ã¾ãã¦ããã¨èããã¨ã"ã«ãã«ã¯"ã®ä½ç½®ã\(n-3\)éããæ®ãã®æåã®ä¸¦ã¹æ¹ã¯\(\frac{(8-4)!}{(8-n)!}=\frac{4!}{(8-n)!}\)éã
"ã«ãã«ã¯"ã®"ã«"ã"ã"ã"ã¯"ã¯ãããã\(2\)æãã¤ããã®ã§\(2^3=8\)åãã¦ãæ´çããã¨\((n-3)\times\frac{4!}{(8-n)!}\times8\)
ãããå
¨ä½ã®ä¸¦ã³æ¹ã®æ°ã§å²ãã¨ç¢ºçãåºãã¦ã\(P(n)=\frac{n-3}{7\times 6\times 5}\)ã¨ãªã
ãã£ã¦\(P(8)=\frac{1}{42}\)
解æ³2
次ã«åãåé¡ãå
é¤åçã使ã£ã¦è§£ãã¦ã¿ã¾ã(ãã£ã¡ã®ã»ããè¨ç®ãç°¡åã§ã復å
æ½åºã®æ¹ã§ã使ãã¾ã
åã«ä»¥ä¸ã®è¨äºã§ã使ãã¾ããããéåå士ã®åéåã®å¤§ãããæ±ããæ¹æ³ã§ã
åºæ¬çã«\(|A \cup B| = |A| + |B| - |A \cap B|\)ã®ä¸è¬åã§ã
éåã®æ°ãå¢ããæã«ã¯ãçµã¿åãããéåãå¢ãããªãã足ãã®ã¨å¼ãã®ã¨ã交äºã«ç¹°ãè¿ãã¦ããã°ããã§ã
\(|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|\)
éåã\(n\)åã®å ´å
$$\Biggl|\bigcup_{i=1}^n A_i\Biggr| = \sum_{k = 1}^{n} (-1)^{k+1} \left( \sum_{1 \leq i_{1} < \cdots < i_{k} \leq n} \left| A_{i_{1}} \cap \cdots \cap A_{i_{k}} \right| \right)$$
ããä½ç½®ã§"ã«ãã«ã¯"ãå§ã¾ãäºè±¡ã«ã¤ãã¦èããã¨ãåæã«éãä½ç½®ã§"ã«ãã«ã¯"ãå§ã¾ããã¨ã¯ããããªãã®ã§çµå±åç´ã«ããããã®å ´æã®ç¢ºçã足ãåãããã°ãããã¨ã«ãªãã¾ã
ããä½ç½®ã§"ã«ãã«ã¯"ãå§ã¾ã確çã\(p=\frac{2\times 1\times 2 \times 1}{8 \times 7 \times 6 \times 5}=\frac{1}{7 \times 6 \times 5}\)ã¨ããã¨
\(P(n)\)ã¯\(n-3\)éãã®\(p\)ã足ãåãããã°ããã®ã§\(P(n)=(n-3)p=\frac{n-3}{7\times 6\times 5}\)ã¨ãªãã¾ã
復å æ½åºç
"ã«ãã«ã¯ãã¯ã³ã´"ã®ããããã®æåãæ¸ããã8æã®ã«ã¼ããããã
ã«ã¼ããã·ã£ããã«ãã¦1æå¼ãå
ã«æ»ãæé ã8åç¹°ãè¿ãã
å¼ãã8æã®ã«ã¼ãã®æåãé çªã«ä¸¦ã¹ãæã«"ã«ãã«ã¯"ã¨ããæåãé£ç¶ãã¦å«ã¾ãã確çãçãã
— ç¡éç¿(id:sucrose)@17æç
(@Scaled_Wurm) 2015, 5æ 28
"ã«ãã«ã¯ãã¯ã³ã´"ã®ããããã®æåãã«ã¼ãã«ãã¦ã·ã£ããã«ãããã¨ã«1æåãåºãã¦å±±æã«æ»ããã¨ããæé ãä½åãç¹°ãè¿ããæã«"ã«ãã«ã¯"ã¨ããæåãé£ç¶ãã¦åºã¦ãã確çãèãã¦ã¿ã¾ã
解æ³1
\(8\)æåã®å ´åã«ã¤ãã¦ä¸ã§ãã£ãã®ã¨åæ§ã«å
é¤åçã§èãã¦ã¿ã¾ã
ããå ´æãã"ã«ãã«ã¯"ãå§ã¾ã確ç\(p=\frac{1\times 1\times 1 \times 1}{4 \times 4 \times 4 \times 4}=\frac{1}{256}\)
é復å
æ½åºã®å ´åã¨åæ§ã«\(n-3\)åããã¨ãä»åã¯\(n=8\)ãªã®ã§\(\frac{5}{256}\)ã¨ãªãã¾ã
ãã ã\(8\)æåã®å ´åã«ã¯"ã«ãã«ã¯ã«ãã«ã¯"ã®ããã«"ã«ãã«ã¯"ã\(2\)ç®æã«åºç¾ããå ´åãããã®ã§ãã®ç¢ºç\(\frac{1}{65536}\)ãå¼ããªããã°ããã¾ãã
ãã£ã¦\(P(8)=\frac{5}{256} - \frac{1}{65536} = \frac{1279}{65536}\)
\(8\)æåã®å ´åã¯ä»åã®ããã«ç°¡åã«æ±ãããã¨ãã§ãã¾ãããããã£ã¨æåæ°ãé·ããªã£ã¦ããã¨"ã«ãã«ã¯"ãä½ç®æã«ãåºç¾ããå ´åãèããªãã¨ãããªããªããå é¤åçã§ãè¨ç®ãã©ãã©ãé£ãããªã£ã¦ããã¾ã
解æ³2
ä»åº¦ã¯æ¼¸åå¼ãæ¸ãã¦åçè¨ç»æ³ã§è¨ç®ãã¦ã¿ã¾ã
\(i\)æåç®ããåã«"ã«ãã«ã¯"ãåºç¾ããã«\(i\)æåç®ã®ä½ç½®ã§"ã«ãã«ã¯"ã®\(j\)æåç®ã«ãªã£ã¦ãã確çã\(p_i(j)\)ã¨ãã¾ã
\(i\)æåç®ã®ç¢ºçãããã£ã¦ããæã«\(i+1\)æåç®ã®ç¢ºçã¯ä»¥ä¸ã®ããã«ãªãã¾ã
\(p_{i+1}(4) = \frac{1}{4} p_{i}(3)\)
\(p_{i+1}(3) = \frac{1}{4} p_{i}(2)\)
\(p_{i+1}(2) = \frac{1}{4} (p_{i}(1) + p_{i}(3))\)
\(p_{i+1}(1) = \frac{1}{4} (p_{i}(0) + p_{i}(1) + p_{i}(3))\)
\(p_{i+1}(0) = \frac{1}{4} (3p_{i}(0) + 2p_{i}(1) + 3p_{i}(2) + 2p_{i}(3)) - p_{i+1}(4)\)
æåã®ç¶æ
ã§ã¯\(p_0(0)=1\)ã¨ãªãããã®æ°å¼ãé ã«è¨ç®ãã¦ããã°ããããã®ç¢ºçãæ±ãããã¾ã
ãã®æ\(P(n)=\sum_i^n p_i(4)\)
è¡åã®ç©ã®å½¢ã«ãªã£ãã®ã§ãç¹°ãè¿ãäºä¹æ³ã使ãã°\(O(\log n)\)ãããã§è¨ç®ã§ããã¯ã
(è¨ç®å¼ãåã£ã¦ãããä¸å®ãªã®ã§ãééã£ã¦ãããæãã¦ããã ããã¨å¬ããã§ã)
試ãã«\(200\)æåã¾ã§è¨ç®ãã¦ã¿ã¦ãããã\(54\)%ãããã®ç¢ºçã§ãã"ã«ãã«ã¯"ã®æååã¯åºç¾ãã¾ãã
ã¾ã¨ã
"ã«ãã«ã¯ãã¯ã³ã´"ããã©ã³ãã ã«åãåºãã¦"ã«ãã«ã¯"ãåºç¾ãã確çã¯çµæ§ä½ã
ã¡ãªã¿ã«é復å
æ½åºã§ã復å
æ½åºã§ããã«ãã«ã¯ããåºã¦ãã確çã®ã»ããããã¯ã³ã´ããããé«ãã§ã
ã½ã¼ã¹ã³ã¼ã
# -*- coding: utf-8 -*- from fractions import Fraction N = 8 M = N + 1 dp = [[0]*5 for i in xrange(M)] dp[0][0] = 1 for i in xrange(1, M): weight = [ [3, 2, 3, 1], [1, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1], ] for j in xrange(4, -1, -1): for k in xrange(4): dp[i][j] += Fraction(1, 4) * weight[j][k] * dp[i - 1][k] print float(sum([dp[i][4] for i in xrange(M)])), sum([dp[i][4] for i in xrange(M)]) """ from pylab import * import matplotlib.font_manager data = [] cum = 0 for i in xrange(M): cum += dp[i][4] data.append(cum) xlabel('n') ylabel('probability') prop = matplotlib.font_manager.FontProperties(fname=r'C:\Windows\Fonts\meiryo.ttc', size=14) title(u'"ã«ãã«ã¯ãã¯ã³ã´"ãã$n$æå復å æ½åºãã¦"ãã¯ã³ã´"ãå«ãæååãå¼ãå½ã¦ã確ç', fontproperties=prop) plot(xrange(M), data) show() """