Derangementã¯\(1, 2, \dots, n - 1, n\)ãè¦ç´ ã¨ããé åã®ãã¡ããã¹ã¦ã®\(i\)çªç®ã®è¦ç´ ã\(i\)ã¨çãããªãé åã®ãã¨(ä¸åç¹ã®åæ°ã\(0\))
ãã¨ãã°\(1, 2, 3\)ãè¦ç´ ã¨ããé åã¯ä»¥ä¸ã®6éãã®ãã®ãããã¾ã(ä¸åç¹ã«ä¸ç·ãå¼ãã¦ãã¾ã)
- \(\underline 1, \underline 2, \underline 3\)
- \(\underline 1, 3, 2\)
- \(2, 1, \underline 3\)
- \(2, 3, 1\)
- \(3, 1, 2\)
- \(3, \underline 2, 1\)
ãã®å ãDerangementã¯ä»¥ä¸ã®2éãã«ãªãã¾ã
- \(2, 3, 1\)
- \(3, 1, 2\)
æ¥æ¬èªã§ã¯æªä¹±é åã¨ãå®å
¨é åã¨ãè¨ããããã§ã
ãã®åæ°ãæ±ããã®ã¯ã¢ã³ã¢ã¼ã«åé¡ã¨å¼ã°ãããããã¦(?)ãDerangementã®åæ°ã¯ã¢ã³ã¢ã¼ã«æ°ã¨ãsubfactorial \(!n\)ã¨ãå¼ã°ãããããã§ã
以ä¸ã§ã¯Derangementã®åæ°ã¨ã確çã¨ããæ±ãã¦ããã¾ã
解æ³1 - å é¤åç
\(i\)çªç®ã®è¦ç´ ã\(i\)ã§ãªãé åã®éåã\(A_i\)ã¨ãã¾ã
ãã®æsubfactorialã¯\(!n = \Biggl|\bigcap_i^n A_i\Biggr|\)ã¨è¡¨ããã¨ãã§ãã
åéåãç©éåã®è¦ç´ æ°ã¯å é¤åçã使ãã¨ç°¡åã«æ±ãããã¨ãã§ãã
å é¤åç
äºã¤ã®éåã®åéåã®å¤§ãããæ±ããã¨ãã«ä½¿ã以ä¸ã®å¼ã®\(n\)åã®éåã§ã®ä¸è¬å
\(|A \cup B| = |A| + |B| - |A \cap B|\)
éåã®æ°ãå¢ããæã«ã¯ãçµã¿åãããéåãå¢ãããªãã足ãã®ã¨å¼ãã®ã¨ã交äºã«ç¹°ãè¿ãã¦ããã°ãã
\(|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|\)
éåã\(n\)åã®å ´å
$$\Biggl|\bigcup_{i=1}^n A_i\Biggr| = \sum_{k = 1}^{n} (-1)^{k+1} \left( \sum_{1 \leq i_{1} < \cdots < i_{k} \leq n} \left| A_{i_{1}} \cap \cdots \cap A_{i_{k}} \right| \right)$$
ç©éåãæ±ããå ´åã«ã¯ãã»ã¢ã«ã¬ã³ã®æ³åããå
¨ä½éåã\(S\)ã¨ç½®ãã¦
$$\Biggl|\bigcap_{i=1}^n A_i\Biggr| = \Biggl|\overline {\bigcup_{i=1}^n \overline{ A_i}}\Biggr| = |S| - \sum_{k = 1}^{n} (-1)^{k+1} \left( \sum_{1 \leq i_{1} < \cdots < i_{k} \leq n} \left| \overline{A_{i_{1}}} \cap \cdots \cap \overline{A_{i_{k}}} \right| \right)$$
ã¡ãªã¿ã«昨日の記事ã§æ¸ãããªã¤ã©ã¼ã®ãã¼ã·ã§ã³ãé¢æ°ãå
é¤åçã§æ±ãããããããã§ã
以ä¸ã®è¨äºã®Applicationsã®ã¨ããã«ããããã¨æ¸ãã¦ããã¾ã
subfactorialã®å°åº
\(i\)çªç®ã®è¦ç´ ã\(i\)ã§ãªãé åã®éåã\(A_i\)ã¨ç½®ããæå
é¤åçã¨ãã»ã¢ã«ã¬ã³ã®æ³åãã\(!n = \Biggl|\bigcap_i^n A_i\Biggr| = |S| - \sum_{k = 1}^{n} (-1)^{k+1} \left( \sum_{1 \leq i_{1} < \cdots < i_{k} \leq n} \left| \overline{A_{i_{1}}} \cap \cdots \cap \overline{A_{i_{k}}} \right| \right)\)
ãã®ã¨ã\(\sum_{1 \leq i_{1} < \cdots < i_{k} \leq n} \left| \overline{A_{i_{1}}} \cap \cdots \cap \overline{A_{i_{k}}} \right|\)ã¯ä¸åç¹ã\(k\)å以ä¸ã§ããé åã®éåãªã®ã§
\(\sum_{k = 1}^{n} (-1)^{k+1} \left( \sum_{1 \leq i_{1} < \cdots < i_{k} \leq n} \left| \overline{A_{i_{1}}} \cap \cdots \cap \overline{A_{i_{k}}} \right| \right) = \sum_{k = 1}^{n} (-1)^{k+1} \binom{n}{k} (n - k)!\)
äºé
ä¿æ°\( \binom{n}{k}=\frac{n!}{k!(n - k)!}\)ã代å
¥ããã¨
\(\sum_{k = 1}^{n} (-1)^{k+1} \binom{n}{k} (n - k)! = \sum_{k = 1}^{n} (-1)^{k+1} \frac{n!}{k!(n - k)!} (n - k)! = \sum_{k = 1}^{n} (-1)^{k+1} \frac{n!}{k!}\)
以ä¸ãã\(|S| = n!\)ãªã®ã§\(!n = n! - n!\sum_{k = 1}^{n} \frac{(-1)^{k+1} }{k!} = n!\sum_{k = 0}^{n} \frac{(-1)^{k} }{k!}\)
ãã®çµæããDerangementã«ãªã確ç
$$P(n) = \frac{!n}{n!} = \sum_{k = 0}^{n} \frac{(-1)^{k} }{k!}$$ \(\lim_{n \to \infty}P(n)\)ã¯\(e^x\)ã®ãã¯ãã¼ãªã³å±éã«\(x=-1\)ã代å
¥ãããã®ã«çããã®ã§ãDerangementã«ãªã確çã¯ä»¥ä¸ã®ããã«ãªã
$$\lim_{n \to \infty}P(n)=\frac{1}{e}\approx36.8\%$$
解æ³2 - 漸åå¼
次ã®ãããªæ¼¸åå¼ããªããã¤ããã§ã(èªåã§å°åºã§ããæ°ã¯ãã¾ããã
$$!n=(n-1)(!(n-1)+!(n-2))$$ä½ç½®\(i=1\)ã«ç½®ããã¨ãã§ããè¦ç´ ã¯\(1\)以å¤ã®\(n-1\)éãããã¾ã
ä½ç½®\(i=1\)ã«ç½®ããè¦ç´ ã\(j\)ã¨ããã¨ãã以ä¸ã®2種é¡ã«å ´ååããã¾ã
- ä½ç½®\(j\)ã«\(i\)ãç½®ããæ(ã¤ã¾ã\(i\)ã¨\(j\)ãå
¥ãæ¿ãã£ãç¶æ
ã«ãªã£ã¦ããæ)
- æ®ãã®é¸ã³æ¹ã¯\(!(n-2)\)ã«çãã
- \(j\)ã®é¸ã³æ¹ã\((n-1)\)éããªã®ã§ãå ¨ä½ã§ã¯\((n-1)(!(n-2))\)
- ä½ç½®\(j\)ã«\(i\)以å¤ãç½®ããæ
- é¸ã³æ¹ã¯\(!(n-1)\)ã«çãã
- \(j\)ã®é¸ã³æ¹ã\((n-1)\)éããªã®ã§ãå ¨ä½ã§ã¯\((n-1)(!(n-1))\)
以ä¸ããåè¨ããã¨\(!n=(n-1)(!(n-1)+!(n-2))\)
ãã®æ¼¸åå¼ã®ä¸è¬é
ãæ±ããã®ã¯çµæ§ããã©ãããã®ã§ä»¥ä¸ã®è¨äºããããåèã«ãã¦ãã ãã
æçµçã«å
é¤åçã§æ±ããçµæã¨åãã«ãªãã¾ã
イズミの数学>大学入試数学演習>完全順列[2004 東工大(後)]
combinatorics - I have a problem understanding the proof of Rencontres numbers (Derangements) - Mathematics Stack Exchange
ãã®è¨äºãæ¸ãããã£ãã
ãã®è¾ºã®ãã¤ã¼ããè¦ã¦Derangementã«ã¤ãã¦èª¿ã¹ã¾ãã
é¢ç½ããã¤ã¼ãããããã¨ããããã¾ã
ä»æ¥ã¯å¦çããã¼ã«ï¼çºæ³¡é
ã5ã¤(=n)並ã¹ã¦å©ãé
ããã¦ãããã§ãå
¨é¨å¤ãã¦ãå¦çãããã®ã§ç¢ºçãèãã¦ã¿ããæå¤ã¨é£ããã£ãããã¶ãå ´åã®æ°ã®åæãå¿
è¦ã§n=5ãæç®ã®éçãªæããã§ããæå¾
å¤ãæ±ãããã¨ã§æ¤ç®ã§ãã¦ãnââã§åæããã®ã§èå³ãã人ã¯èãã¦ã¿ãã¨é¢ç½ãããã
— Ryohei Sasano (@cacaho) October 3, 2014
å©ãé
ã®ä»¶ãåãªãã¢ã³ã¢ã¼ã«åé¡ã§ã¯â¦ï¼
— ãããï¼ ç¤¾äºç
(@risuosan) October 3, 2014
ã¢ã³ã¢ã¼ã«æ°ã®è©±ãèªãã§ãã¦ã漸åå¼ã®è§£ãæ¹ãã¾ã£ããæãåºããªããã¨ã«æ°ã¥ãã(´ã»Ïã»ï½) / å®å
¨é å - Wikipedia http://t.co/0bkEgKozE8
— ç¡éç¿(id:sucrose)@10æç
(@Scaled_Wurm) 2014, 10æ 3
ãã®æ¼¸åå¼, å
ãã¦é¤ããã¢ã¬ã§åºããã ãªã.
— é²æç¡ãã¦ãç
½ããªãã§ä¸ãã (@Mi_Sawa) 2014, 10æ 3