2012-07-01ãã1ã¶æéã®è¨äºä¸è¦§
Finding Bursty Topics from Microblogs æ¦è¦ ãããã¯æ¨å®ã§ç¨ãããããã¨ã®å¤ãLDA(Latent Dirichlet Allocation)ã«ä»¥ä¸ã®2ã¤ã®ãã¤ã¯ãããã°ç¹æã®è¦ç´ ãå ããï¼ åãæéã«ã¯åããããªãããã¯ãåºãããï¼ä¾ãã°å¤§äºä»¶ãèµ·ããæ¥ ã¦ã¼ã¶ã¼ã¯æéã«â¦
Deciphering Foreign Language by Combining Language Model and Context Vectors æ¦è¦ é常ã®çµ±è¨çæ©æ¢°ç¿»è¨³ã§ã¯ãã©ã¬ã«ã³ã¼ãã¹ã¨ããåãæã®å¯¾è¨³ãã¼ã¿ãã³ã³ãã©ãã«ã³ã¼ãã¹ã¨ããåããããªãããã¯ã«ã¤ãã¦æ¸ããããã¼ã¿ãªã©ãå©ç¨ãããã¨ãå¤ãâ¦
Macã§ã¯\(ããã¯ã¹ã©ãã·ã¥)ã¯option + Â¥ãããªãã¨å ¥åã§ããªãã¨ãã話ãè¦ãã®ã§ã¡ã¢ãã¨ãã Â¥ãæã¤ã¨Â¥(åè§åè¨å·)ãåºã¦ãããããã åã«Twitterã§ããã¯ã¹ã©ãã·ã¥ãæã¦ãªãã§ããã£ã¦ãã人ãè¦ãããã®ã§â¦â¦ã åè åè¨å· - Wikipedia åè¨å·ã®â¦
Stylometric Analysis of Scientific Articles æ¦è¦ è«æã®æä½ãã以ä¸ã®3ã¤ã®ã¿ã¹ã¯ãSVMãç¨ãã¦èå¥ï¼ è±èªãã¤ãã£ããå¦ã æ§å¥ ã«ã³ãã¡ã¬ã³ã¹ãã¯ã¼ã¯ã·ã§ããã 使ç¨ããã¦ããfeature Bow(åèª) Style(æä½) Syntax(æ§æ) çµæ Få¤ã§ãã¤ãã£ããâ¦
Welcome to AtCoder Regular Contest #006 - AtCoder Regular Contest #006 | AtCoder å®ã¯ååå ï¼ 3åç®ã¾ã§è§£ãã¦62ä½ã§ãã A: å®ãã - AtCoder Regular Contest #006 | AtCoder å®ãããä½çã«ãªã£ã¦ãããè¨ç®ï¼ ãã®ã¾ã¾æ¸ãã ãï¼ éä¸ã¾ã§æ°åã®éâ¦
Word Salad: Relating Food Prices and Descriptions æ¦è¦ ã¬ãã¥ã¼æãã極æ§(ãã¸ãã£ãããã¬ãã£ãã)ãæ¨å®ããã£ã¦è©±ã¯ããããããããã©ï¼ããã¯èª¬ææãã¬ãã¥ã¼æããé£ã¹ç©ã®å¤æ®µãæ¨å®ããã£ã¦ããé¢ç½ãã¿ã¹ã¯ï¼ç´ æ§ã¨ãã¦ã¯ã¡ãã¥ã¼åã説ææâ¦
Linuxã§ã®C/C++ã³ã³ãã¤ã©ã¨ããã°gcc/g++ã§ããããæè¿clang/clang++ã¨ããã³ã³ãã¤ã©ã®ã¨ã©ã¼ã¡ãã»ã¼ã¸ãããããããã¨ãã話ãããè¦ãããã®ã§è©¦ãã¦ã¿ã¾ããã ã¤ã³ã¹ãã¼ã« 主ã«ä»¥ä¸ã®å ¬å¼ãµã¤ãéãã«ããã¾ãã Clang - Getting Started configurâ¦
Wiki-ly Supervised Part-of-Speech Tagging æ¦è¦ ããªã¼ãªè¾æ¸ã®Wiktionaryãå©ç¨ãã¦ãå¼±æ師ããå½¢æ ç´ è§£æãè¡ããWiktionaryã«ç»é²ããã¦ããåè©ãé¸ã°ããããã«å¶éãããã¦ï¼é ããã«ã³ãã¢ãã«ãEMã¢ã«ã´ãªãºã ãç¨ãã¦å¦ç¿ï¼Unsupervisedãªå ´åãâ¦
An Empirical Investigation of Statistical Significance in NLP æ¦è¦ èªç¶è¨èªå¦çã«ãããæææ§æ¤å®ã«é¢ãã調æ»ï¼ ææ³ ããã¤ãã®ã¯ã¼ã¯ã·ã§ãããshared taskã§ã¯åãã¼ã ã®åºåãå ¬éããã¦ãã¦ï¼ãããã«å¯¾ãã¦æ¤å®ãè¡ãªã£ã¦è©ä¾¡ææ¨ã¨p-valueã®é¢â¦
Multi-Domain Learning: When Do Domains Matter? æ¦è¦ ãã«ããã¡ã¤ã³ã©ã¼ãã³ã°(MDL)ã«ãããããã¤ãã®çåã«å¯¾ããæ¤è¨¼ï¼ MDLã«ãã精度ä¸æã¯å¿ ããããã¡ã¤ã³ã®å½±é¿ã§ã¯ãªãï¼ã¢ã³ãµã³ãã«ã®å¹æã§ã¯ãªããï¼ ãã¡ã¤ã³ã©ãã«ãã©ã³ãã ã«å ¥ãæ¿ãã¦ãâ¦
Polarity Inducing Latent Semantic Analysis æ¦è¦ ææ¸-åèªè¡åä¸ã§cosé¡ä¼¼åº¦ãªã©ã使ãã¨ï¼æå³çã«ä¼¼ãåèªå士ãè¦ã¤ãããã¨ãã§ããï¼ ããããã®å ´åã®ãæå³çã«ä¼¼ããã¨ããã®ã¯ãé¡ç¾©èªãããã¯åæèªãã§ããï¼ãåæèªãã ããè¦ã¤ãããå ´åã«â¦
"Exploring Topic Coherence over many models and many topics" æ¦è¦ ãããã¯ã¢ãã«[LSA(SVDã«ãã), LSA(NMFã«ãã), LDA]ã®æ¯è¼ãè¡ãã åºåãããããã¯ã®ã³ãã¼ã¬ã³ã¹(ä¸è²«æ§)ãè¿å¹´ææ¡ãããææ³(UCI measure, UMass measure)ã®å¹³åãã¨ã³ãããã¼â¦
ã¯ã¦ãªãã¤ã¢ãªã¼çã®æ¹ããè¨äºãã¤ã³ãã¼ããã¦ã¿ã¾ãããTwitterè¨æ³ãªã©ãã¡ããã¨åãã¦ãããã§ããããããã«åé¤ããè¨äºã«ã¤ãã¦ãã¯ã¦ããªã©ã¯ç§»åãã¦ãããªãã¿ããã§ãâ¦â¦ã
移転ããã®ã§åã®ããã°ã®ããããè¨äºãæ¸ãã¨ãã¾ãã ããããç³» ãæå¼·ã®ãã±ã¢ã³ã®çæã - NLP2012ã®ãªããããé¢ä¿ã®è«æ - å¯ç©æ¯ç @Scaled_Wurm æååãã人ãåããã¤ã¡ã¼ã¸ã«é¢ããç 究ã§ããã±ã¢ã³ãé¡æã«ãã¦ãã¨ããããã£ããã¼ã§é¢ç½ãã§â¦
å½¢æ ç´ è§£ææ©MeCabã§åãã¡æ¸ããå¾ããæã«ã¯-Owakatiãèªã¿ãå¾ããæã«ã¯-Oyomiã¨ããªãã·ã§ã³ãä»ãã¾ããããã£ã¨ç´°ãããã©ã¼ããããæå®ãããã¨ãã§ããã¿ããã§ãã ããã¤ã試ãã¦ã¿ãã®ã§ãæ¸ãã¨ãã¾ãã å½¢æ ç´ ã¨åè©ã®ã㢠mecab -F"%m-%f[0]â¦
ã½ã¼ã¹ã³ã¼ããè²¼ããããã«ãªã£ãã®ã§ï¼ããããæ¬æ ¼çã«ã¯ã¦ãªãã¤ã¢ãªã¼ããã®ç§»è¡ãæ¤è¨ä¸ï¼ console.log('Hello, Hatena Blog!');
ã¯ã¦ãªãã¤ã¢ãªã¼ã§ã½ã¼ã¹ã³ã¼ããè²¼ãæã®å®çªã ã£ãã¹ã¼ãã¼preè¨æ³ã§ããï¼ã¯ã¦ãªããã°ã§ã¯ä½¿ããè¨èªãéããã¦ãããããªè¨æ¶ãããã¾ãï¼ ããããã§ã«ã¯ã¦ãªãã¤ã¢ãªã¼ã§å¯¾å¿ãã¦ããè¨èªã¯ãã¹ã¦ä½¿ããããã«ãªã£ã¦ããã¿ããã§ãï¼ gist(github)ãªâ¦
ããã¹ããã¼ã¿ãããã¹ããã¡ã¤ã«ã¨ãã¦ååãä»ãã¦ä¿åãããæç¨ï¼ aè¦ç´ ã®downloadå±æ§ã使ã£ã¦ããã®ã§ãã¶ãChromeã®ã¿(ï¼)ã§ãï¼ å ·ä½çã«ã¯aè¦ç´ ãä½ã£ã¦Alt + Clickã®ã¤ãã³ããçºçããããã¨ã§ä¿åããã¦ãã¾ãï¼ ããã¹ãã¯Data URIã¹ãã¼ã ã®â¦
ã©ãã«ãéè¦ã¯ãªãæ°ããããã©ï¼è©¦ãã«è±èªã¨æ¥æ¬èªã§Chromeæ¡å¼µã®å½éåããã£ã¦ã¿ãï¼ Chromeæ¡å¼µã§ã¯ããã±ã¼ã¸å ã«_locals/è¨èªã®ç¨®é¡/messages.jsonã¨ãããã¡ã¤ã«ãä½ãã¨å½éåãããã¨ãã§ããï¼ ãã®æmanifest.jsonã«"default_locale"ã®æå®ãå¿ â¦
Chromeã¦ã§ãã¹ãã¢ãããæ¡å¼µãæ´æ°ããªãã¨ãå ¬éãããªããªã(æ訳)ãã¨ããå 容ã®ã¡ã¼ã«ãå±ãã¾ããã Chromeæ¡å¼µã¯ã»ãã¥ãªãã£ã®é¢ä¿ä¸ããã¡ã¤ã«ã®èªã¿è¾¼ã¿è¨å®ãªã©ãå¤æ´ãããã¨ã«ãªããæ¡å¼µã®è£½ä½è ã¯æ°ä»æ§(Manifest Version 2)ã«å¯¾å¿ããªããã°â¦
1151â1151ããªããã¬ã¼ãã¯å¤ãããã Level Oneã解ãã¦Level Twoã¯ãã£ã¬ã³ã¸ãããããã£ã¬ã³ã¸1ã¤æå1ã¤å¤±æããã£ã¨æãåãããããã°ãã£ã¬ã³ã¸ã§ããããªã®ãããã¤ããã£ãã Room Statistics Level One é åå ã®è¦ç´ ã®ç¨®é¡æ°ã¨ãæé »åºã®è¦ç´ ã®åâ¦
http://www.cs.washington.edu/homes/aritter/mt_chat.pdf ç 究室ã®è«æç´¹ä»ã§ç´¹ä»ãããEMNLP2011ã®è«æã æ¦è¦ Twitterãªã©ã®ãããªã¡ãã»ã¼ã¸ã«å¯¾ããå¿çãèªåçæã ã¡ãã»ã¼ã¸ã¨ãã®å¿çã®ã³ã¼ãã¹ã«å¯¾ãã¦çµ±è¨çæ©æ¢°ç¿»è¨³ã®ææ³ã使ã£ãããé¡ä¼¼åº¦ã®â¦