ãªãÏã¯å¶æ°ã
ãããçµåããã«ãé¡ãããã¦ãã¾ã£ã¦ã¾ããæ¥è¨ã¯æ¥½ããæèªãã¦ãã¾ããããã°ã©ãã³ã°ã®ãã¨ã¯ãããããã¾ãããã使¥ã¸ã®åãçµã¿æ¹ãªã©ãã¨ã¦ãåèã«ãªãã¾ãã
追è¨ï¼ã¯ã¦ãªããã¯ãã¼ã¯ã«ãéåè«è ã«ã¨ã£ã¦ã¯Ïã¯å¶æ°ãªãã§ããããã¨ããã³ã¡ã³ããããããããªãã§ããã解説ãé¡ããã¾ãããããç¥ãããï¼
åã«ã(æ®éã®)éåè«è
ç¸æãªããeven ordinalãodd ordinalãä½ãæãã®ãã¯ããã¦ãå
±éèªèããã£ã¦ã(ããããå
¬å¼ã«å®ç¾©ããã¦ããããã§ã¯ãªãããã©ã)åé¡ãªãéããã¨ãããã¨ãªã®ã§ããããéåè«ã§ã¯ãã¨æ¸ãã¦ããªããã¨ã«æ³¨æã
ãªãããèªèãã¦ãããã¨ããé¨åãæ¸ãã¦ã¿ã¾ããèªç¶æ°ã«é¢ãã¦ã¯ãã2ã§å²ãåããã®ãå¶æ°ãã¨ããã®ãæ®éã®å®ç¾©ã ã¨æãã¾ã*1ãnãé0ãªmã§å²ãåããã¨ããã®ã¯ãn=mkã¨ãªããããªèªç¶æ°kãåå¨ãããã¨ã¨å®ç¾©ã§ãã¾ããã
復ç¿ãã¦ããã¨ãé åºæ°ã«å¯¾ãã¦ãè¶
éå¸°ç´æ³ã使ã£ã¦æãç®ãå®ç¾©ã§ãã¾ãã
- α0=0
- α(β+1)=αβ+α
- Î²ãæ¥µéé åºæ°ã®ã¨ããαβ=
注æãã¦ãããªããã°ãããªãã®ã¯ããã®æãç®ã¯å¯æã§ã¯ãªãã¨ãããã¨ã§ãã
ä¾ãã°ã
ã§ããã
ã¨ãªãã¾ãã
ããã¦ãé åºæ°Î±ãé åºæ°Î²ã§å²ãåããã¨ããã®ããα=βγã¨ãªããããªé åºæ°Î³ãåå¨ãããã¨ã¨ãã¦å®ç¾©ãã¾ããããã¯èªç¶æ°ä¸ã®ãå²ãåãããã¨ããæ¦å¿µã®æ¡å¼µã«ãªã£ã¦ãã¦ããã以å¤ã®æå³ã§ãèªç¶ãªãã®ã¨ãªã£ã¦ãã¾ã*2ã
ãã®å®ç¾©ã使ã£ã¦ãé åºæ°Î±ãå¶æ°ã§ããã¨ãããã¨ããαã¯2ã§å²ãåãããã§å®ç¾©ãã¾ãããããã®å ´åãÏ=2Ïãªã®ã§Ïã¯å¶æ°ã¨ãããã¨ã«ãªãã¾ããããã¦Ï+1ã¯å¥æ°(å¶æ°ã§ãªãã®ã¯å¥æ°ã£ã¦ãã¨ã§)ãÏ+2ã¯å¶æ°ãã£ã¦ãµãã«ç¶ãã¦ããã¾ãã
ããããããã¾ãã¡è ã«è½ã¡ãªãå ´åã«ã¯0ã®ãã¨ãæãåºãã¦ã¿ã¾ãããã0=α+1ã¨ãªããããªé åºæ°Î±ã¯åå¨ãã¦ãã¾ããã®ã§ã0ã¯æ¥µéé åºæ°ã§ã*3ãããã¦ã0ã¯å¶æ°ã§ãããããèãã¦ã¿ãã°ã極éé åºæ°ãå¶æ°ã¨èããã®ã¯èªç¶ã§ããã¨æãã¾ãããï¼
ãã£ã¨ã極éã®ã¨ããã§ã¯ããããã¨ããããããã¨ãèµ·ãããã¨ãå¤ãã§ããããã®å¶å¥ã®å®ç¾©ã常ã«å®ç§ã ã¨ããããã§ããªãã§ãããã¨ããããç§ãéåè«è å士ã§even ordinaläºã ã¨è¨ã£ãå ´åã«ã¯ä¸è¨ã®æå³ã§ãããããã§ä»ã¾ã§å°ã£ããã¨ã¯ãªãã¨ãããã¨ã§ã
*1:å¤ãªå®ç¾©ã¯èãããã¾ããâ¦ã
*2:ãããα=γβã®é ã«ãªã£ã¦ããã¨ãÏ+1ãÏ+2Ï2+1ãÏ2+2ã2ã§å²ãåãã¦ãã¾ãã®ã§æ°æã¡æªãã§ããããã®ãããªå¤ãªãã¨ã¯ä¸è¨ã®å®ç¾©ã§ã¯èµ·ãã¾ããã[追è¨]ãã¿ã¾ãããä¸ã®é¨åã¯ã¨ãã§ããªãééãã§ããããã®å®ç¾©ã ã¨Ï+1ãÏ+2ã2ã§ã¯å²ãåãã¾ããããããã¿ããããææãããã¨ããããã¾ãã
*3:ãã®ãããç¹æ®ãªæ¥µéé åºæ°ã§ãã0ã¯æ¥µéé åºæ°ã¨ã¿ãªããªããã¨ãæã£ã¡ãã£ã¦ããè«æãããã¾ããã