IoTãAIã®ã¦ã¼ã¹ã±ã¼ã¹ãã¾ãã¾ãå¢ãã¦ããã®ãªããããã°ãã¼ã¿ããªã¢ã«ã¿ã¤ã ã«SQLã§ã¯ã¨ãªããéè¦ãé«ã¾ã£ã¦ããããã¡ããå®ç¾ããã½ãªã¥ã¼ã·ã§ã³ã¨ãã¦ãApache Hive 㨠Druid ã®çµåããé åã§ãã Apache Hive 㨠Druid ã¨ãå®ç¸¾ã®é«ããªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ï¼OSSï¼ã 両æ¹ã¨ãé常ã«å¤§éã®ãã¼ã¿ã§ã対å¿ã§ããã¹ã±ã¼ã«ã¢ã¦ãã»ã¢ã¼ããã¯ãã£ã Apache Hive 㨠Druid èªä½ãä¾åã³ã³ããã³ãå ¨ã¦ã¯ãApache Ambariã使ã£ã¦GUIã¦ã£ã¼ã¶ã¼ã§ã¤ã³ã¹ãã¼ã«å¯è½ã ç°¡åãªè¨å®ã ãã§é£æºå¯è½ã ä»åã¯Apache Hiveã¨Druidã使ã£ããªã¢ã«ã¿ã¤ã SQLå¦çãããµã³ãã«ã¿ãªãã説æããã Apache Hive 2ã¨ã¯ Apache Hiveã¯Hadoopä¸ã®SQLãã¼ã¿ã»ã¦ã§ã¢ãã¦ã¹ã§ããææ°ã®Hive 2.2ã¯æ°ããLLA
â»å½ããã°ã§ã¯ã¢ãã£ãªã¨ã¤ãåºåãå©ç¨ãã¦ãã¾ãã Presto ããããå§ããã®ã§ããã°ã©ãã³ã°è¨èªããç°¡åã«æä½ãããã¨æãè²ã è¦ã¦ã¿ãã¨ãããPython ã§ã¯ PyHive ã¨ããããã±ã¼ã¸ãããã¾ããã PyHive ã使ã£ã¦ Hive ã«ã¿ãã°ã®ãã¼ãã«ã« Presto ã¯ã¨ãªãå®è¡ããã¾ã§ãã¡ã¢ãã¾ãã Hiveãã¼ãã«ã®æºå é©å½ã«ãã¼ãã«ãä½æãã¬ã³ã¼ããå ¥ãã¦ããã¾ããä»åã¯hogeãã¼ãã«ããvalue1ãåå¾ãããã¨ãç®æ¨ã§ãã hive> CREATE TABLE hoge > (fuga string); hive> INSERT INTO TABLE hoge VALUES('value1'); hive> SELECT * FROM hoge; OK value1 PyHiveã®ã¤ã³ã¹ãã¼ã« 以ä¸ã®ãªãã£ã·ã£ã« GitHub PyHive ãªãã¸ããªã®ããã¥
Jupyter ãã Hive ã使ãã®ã« PyHive + ipython-sql ã便å©ã ã£ãã PyHive PyHive 㯠Hive ã® Thrift ã¯ã©ã¤ã¢ã³ãã DB-API 2.0 (PEP 249) æºæ ã® API ã§ã©ããããã©ã¤ãã©ãªã ãDB-API 㯠Python ã§ãã¼ã¿ãã¼ã¹ã«ã¢ã¯ã»ã¹ããããã®æ¨æºçãªã¤ã³ã¿ã¼ãã§ã¼ã¹ã§ãPerl ã® DBI ã Java ã® JDBC ã«ç¸å½ããã PyHive 㨠pandas.read_sql ãããã°ãã¨ãããã SQL ã®çµæã pandas ã«èªã¿è¾¼ããã¨ã¯ã§ããããã«ãªãã ipython-sql ä¸ã®ä¸ã«ã¯ãSQL ãæ¸ãã®ã¯æåã ãã§ãpandas ã«èªã¿è¾¼ãã§ãããæ¬çªãã¨ããä»äºããã¦ãã人ããããã ãããã©ãç§ã®å ´å㯠SQL ä¸ã§ãããããããã¨ã®ã»ããå¤ãã®ã§ ipython-sql ã使ã£ã¦ãã
HiveServerã¯Thriftãããã³ã«ãããã¹ã*1ã®ã§ãããªããThriftã§æ¥ç¶ããã¨ä»»æã®ã¯ã¨ãªãçºè¡ã§ããããã¦å¤§å¤ä¾¿å©ãã¨ãããã¨ã§ããã£ãã®ã§ããã®ã¡ã¢ã æºå ã¾ãHiveServerã ãã©ãhiveã³ãã³ããå©ãã¦ã¯ã¨ãªãå®è¡ã§ããç¶æ ãªã以ä¸ã®ã³ãã³ãã§èµ·åããã*2 $ hive --service hiveserver ãã ããããããã¼ã¿æå ¥ãªã©ãThriftçµç±ã§ããã®ã¯æ£ç´ããã©ããããhiveã¨å©ãã°èµ·åããHive CLIã§ããã¼ã¿æä½ã¯ãããããªã®ã§ conf/hive-default.xml ã«Metastoreã®è¨å®ããããä»åã¯æå ã®MySQLã« hive ãã¼ã¿ãã¼ã¹ãä½ããããã使ãããã«ããããã®ãããã大å¤åèã«ãªã£ãã Hiveã®metastoreãMySQLã使ã£ã¦Local Metastoreå½¢å¼ã§å©ç¨ãã - blog.kats
ãã¼ã¿ãä¿¡é ¼ããAI ãä¿¡é ¼ãã ä¿¡é ¼ã§ãããã¼ã¿ãä¿¡é ¼ã§ããã¢ãã«ãä¿¡é ¼ã§ãã AI ãå®ç¾ããããã«ãããã»ã©å¤ãã®ã¯ã©ã¦ãã®ãã¾ãã¾ãªãã¼ã¿ã¿ã¤ãã管çã§ãããªã¼ãã³ãã¼ã¿ã®ã¤ããã¼ã·ã§ã³ã¨å¤§è¦æ¨¡å±éã«å¯¾å¿ã§ãããã©ãããã©ã¼ã ã¯ä»ã«ããã¾ããã
Hive Hacksãããããå 容ã¯ã»ã¼OâREILLY Hadoop Hacksããã®å¼ç¨ãã®ã¾ãã¾ããã ã®å人ã¡ã¢ãªã®ã ããããããããå ¬éããã¦ãããã¾ããããããªã¨ããã«è¨é²ãã¦ããã¦ãããã«ãããããã®ã¡ã¢ã©ããã£ãã£ããã¨ãªãã®ã§ããã«æ¸ãã®ãä¸çªãªãã ãããæ¸ããããã£ã¦ç解ã§ããããã§ããªããã ã⦠ï¼åãã«æ¸ãã¦ããã¨ããã®æ稿é·ãã§ãï¼ åºæ¬ååçãªãã¨ã âUPDATEã¯åé¿ãã å¦çé度ãé 延ãããããUPDATEãå¤æ°å«ããããªSQLãHiveSQLã«å¤æãããã¨ã¯é¿ããã¹ã âMapReduceã¿ã¹ã¯ã®ãªã¼ãã¼ããã Hiveã¯ãé«ã¹ã«ã¼ããããç®æãå¦çã«ã¯åãã¦ããããä½ã¬ã³ãã³ã·ãç®æãå¦çã«ã¯åãã¦ããªããã¨ããMapReduceå¦çã®ç¹å¾´ãå¼ãç¶ãã§ãããMapReduceã¿ã¹ã¯ã®ãªã¼ãã¼ããããä»ãã¾ã¨ããã¨ã念é ã«ããã â並ååæ£ãã§ããªãå¦ç
At Facebook, we have unique storage scalability challenges when it comes to our data warehouse. Our warehouse stores upwards of 300 PB of Hive data, with an incoming daily rate of about 600 TB. In the last year, the warehouse has seen a 3x growth in the amount of data stored. Given this growth trajectory, storage efficiency is and will continue to be a focus for our warehouse infrastructure. There
以ä¸ã®è¨äºã§ã¯Pig, Hiveãªã©8種é¡ã®è¨èªã§MapReduceã®ä¸çªåç´ãªä¾ãWordCountãè¨è¿°ããå ´åã®ã¹ã¯ãªããã®æ¯è¼ãè¡ã£ã¦ãã¾ããã¨ã¦ãèå³æ·±ãã£ãã®ã§ç´¹ä»ãããã¨æãã¾ããPigs, Bees, and Elephants: A Comparison of Eight MapReduce Languages « Dataspora ãªããä»åã¯RSSè³¼èªãã¦ããDataSporaã®ããã°ããçºè¦ãã¾ããããã¨ã³ããªãå¯ç¨¿ããã¨ã³ã¸ãã¢ã®å人ããã°ã大å¤èå³æ·±ãã®ã§ãªã¹ã¹ã¡ã§ãã ã¯ããã«MapReduceãç¾ããå¹ççã«æ¸ãããã«ãç§ã¯æ§ã ãªè¨èªãæ¯è¼ãã¾ãããæããã¦ãã®åè ã¯ï¼ï¼ç§ã®å人ããã°ã§ã¯çµ±è¨ãã°ã©ãã®ã¢ã«ã´ãªãºã ãMapReduceã§è¨è¿°ããæ¹æ³ãç´¹ä»ããæ¬ä¼¼ã³ã¼ãã«ããå®è£ ã示ãã¾ãããæ¬ä¼¼ã³ã¼ãã«ã¯2ã¤ã®åé¡ç¹ãããã¾ãï¼èª°ãããã®å½ä»¤ãç解ã§ããã¨
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}