ãã®ä¾ã¯è¦æ¨¡ãå°ãããã¡ãã£ã¨é ã§èãã¦ãã°çããããã£ã¦ãã¾ãããããã¾ãããããã©ã巨大ãªããã«ã ã¨ãããé ã§èããã®ãé£ãããã§ããã¨ã«ãããã®åé¡ä¾ãã¢ãã¼ãªã³ã°ãã·ã³ã§è§£ãã¦ã¿ããã¨ã«ãã¾ãã åé¡ãéåã¢ãã¼ãªã³ã°ãã·ã³ã§è§£ãã¨ãã¯åºæ¬çã«æ¬¡ã®ãããªæµãã«æ²¿ã£ã¦è§£ãã¾ãã (1) åé¡ã®æ½åº(2) éåã¢ãã¼ãªã³ã°ãã·ã³ (ã¤ã¸ã³ã°ã¢ãã«) ã¸ã®ãããã³ã°(3) ã¢ãã¼ãªã³ã°ã®å®è¡(4) 解ã®è§£é (1) åé¡ã®æ½åº ã¾ãã¯ã対象ã®åé¡ãéåã¢ãã¼ãªã³ã°ã§è§£ããã¨ã®ã§ããããã«ã§ããéãã·ã³ãã«ãªåé¡ã«åãåºããã¨ãå¿ è¦ã§ãã ãã®åé¡ã¯å®ã¯ã°ã©ãé ç¹å½©è²åé¡ã«å¸°çããããã¨ãã§ãã¾ãã ã°ã©ãé ç¹å½©è²åé¡ã¨ã¯ãä»»æã®ã°ã©ã G=(V,E) ã¨è²ç·æ° K ãä¸ããããã¨ãããã¹ã¦ã®é ç¹ããé£æ¥ããé ç¹ (ããªãã¡ã辺ã§æ¥ç¶ããã¦ããé ç¹) ãåè²ã«ãªããªãã¨ããå¶ç´ä¸ã§Kè²ã«å¡
{{#tags}}- {{label}}
{{/tags}}