We show that dynamical gain modulation of neurons' stimulus response is described as an information-theoretic cycle that generates entropy associated with the stimulus-related activity from entropy produced by the modulation. To articulate this theory, we describe stimulus-evoked activity of a neural population based on the maximum entropy principle with constraints on two types of overlapping act
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? æ¦è¦ ã¤ãä¸ã¶æåã«ææ¡ããã深層å¦ç¿ã¢ãã«ã§ããDeep Convolutional Generative Adversarial Networks (以ä¸DCGAN)ãchainerä¸ã§å®è£ ããï¼ 70ä¸æãã®å¤§éã®ã¤ã©ã¹ãã使ã£ã¦DCGANã«ã¤ã©ã¹ãããããå¦ç¿ãããï¼ å¾ãããã¢ãã«ãå©ç¨ãã¦ï¼ã³ã³ãã¥ã¼ã¿ã«ã¤ã©ã¹ããæããã¦ã¿ãï¼ çµæã¨ãã¦ã¯çµæ§ä¸æãè¡ã£ãï¼æ¬ç©ã¨è¦åããã¤ããªãã¨ããã¬ãã«ã§ã¯ãªããã®ã®ï¼DCGANã¯æ£å¸¸ã«ã¤ã©ã¹ããããç»åãçæã§ãã¦ããï¼ ãã¿ãç大ã«è¢«ã£ã¦æ¬å½ã«ã¤ãã ã¯ããã« DCGANã¨ããç»å
ä»æã®èªå£²æ°èã«é¢ç½ãè¨äºããã£ãã®ã§ãç´¹ä»ã AIè¸è¡èä½æ¨©ã¯ï¼ 人工ç¥è½ï¼AIï¼ãèªåçã«ä½ã£ã楽æ²ãå°èª¬ã¯ã誰ã®ä½åãã«ãªãã®ããæ¿åºã¯ãAIã¢ã¼ãããå°æ¥ãæ¬æ ¼çã«æ®åããã¨ã¿ã¦ã å¹´æãããèä½æ¨©ã®ããæ¹ã«ã¤ãã¦è°è«ãå§ããã ããããèä½æ¨©ãèªããã¹ããªã®ãããããã¯ãã®AIã®ä½åã ãã¨ãããã¨ãã©ã証æããã®ããªã©ã æ´åãã¹ãã«ã¼ã«ã¯å¤å²ã«ãããã èªå£²æ°è 2015å¹´12æ30æ¥ ãã®è¨äºã§ã¯äººå·¥ç¥è½è¸è¡ã®äºä¾ã¨ã㦠çç·¨å°èª¬çæã·ã¹ãã ããã¾ãã人工ç¥è½ããã¸ã§ã¯ã ä½å®¶ã§ãã®ãã èªåä½æ²ã·ã¹ãã ãOrpheusã ã®2ã¤ãåãä¸ãããã¦ããããã®ãããªäººå·¥ç¥è½ã·ã¹ãã ã§ä½ã£ãã³ã³ãã³ãã®èä½æ¨©ã¯ã©ããªãã®ãï¼ã¨ããã話ã ã£ããèä½æ¨©ã¯ä½è ã®æ»å¾50å¹´éã¨ããã¦ãããã人工ç¥è½ã¯æ»ãªãªãã®ã§ä¿è·æéãåé¡ã«ãªãããã ãã·ã¹ãã ï¼ãµã¼ãã¹ï¼åæ¢ãã50å¹´ã§ããã®ã§ã¯ï¼ã¨
é害
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}