ãµã¤ã³ã¤ã³ããç¶æ ã§ããããããæ¼ãã¨ããã¤ãã¼ã¸ã® ããããå±¥æ´ãã«ä¸è¦§ã¨ãã¦ä¿åããã¦ããã®ã§ã å度èªã¿ãããªã£ãæãããã¨ã§ãã£ããèªã¿ããã¨ãã«ä¾¿å©ã§ãã

æ¥çµå¹³åæ ªä¾¡ãç´30å¹´ã¶ãã«3ä¸åå°ãå復ãããããã³ã¤ã³ã5ä¸ãã«ãçªç ´ããçãè³ç£éç¨ã¸ã®é¢å¿ãé«ã¾ã£ã¦ãã¾ããããã¯æ¥æ¬ã®ã¿ãªãããä¸çåå½ã«ããã¦èµ·ãã¦ãããã¨ã®ããã§ãã 2000年代ã«å ¥ã£ã¦ãããæ¥æ¬ã¯æ ªä¸»ãéè¦ããæ¿çãå±éããä¸çã®æè³ãæ¥æ¬ã«å¼ã³è¾¼ãã§ãã¾ããã ãã®ä¸ã§ãæ¥æ¬ä¼æ¥ã¯é å½ãå¢ããã¦ãã¦ãã¾ãã æ ªä¾¡ã¯ä¸æããé å½ãå¢å ããä¸ã§ãæ ªå¼ã«æè³ããæè³å®¶ã¯åçãå¾ã¦ãã¾ãã 䏿¹ã§ã伿¥ã«åãå人ã«ã¨ã£ã¦ã¯ã2000年代ã¯è¯ãæä»£ã ã£ãã¨è¨ããã§ããããã ä»åã¯ãé å½ã¨çµ¦ä¸ã«ã¤ãã¦ãå°ã確èªãã¦ããããã¨æãã¾ãã é å½ã®æ¨ç§» é å½ã¨çµ¦ä¸ã®æ¨ç§» é å½ã¨çµ¦ä¸ã®é¢ä¿ æè¦ é å½ã®æ¨ç§» 以ä¸ã¯æ¥æ¬å弿ã°ã«ã¼ããéè¨ãã¦ãããæ±ºç®çä¿¡éè¨çµæãããã®ãã¼ã¿ã§ããæ±è¨¼ä¸é¨ã»äºé¨ã»ãã¶ã¼ãºã»JASDAQã«ä¸å ´ãã¦ãã伿¥ãã¼ã¿ã¨ãªãã¾ãã ï¼åºæãæ¥æ¬å弿ã°ã«ã¼ããæ±º
æ±äº¬é½å ã§å¤«å©¦2人ãåä¾2äººã§æ®ããã®ã«å¿ è¦ãªç活費ã«ã¤ãã¦ãå´åçµåã2019å¹´ã®é½å åè²ã¦ä¸å¸¯ã®æä½ç活費試ç®ãå ¬è¡¨ãã¾ããã ãæ±äº¬ã§æ®éã«åè²ã¦ãããããã«ã¯ãããå¿ è¦ã«ãªãã®ããããã¼ãã¨ãã¦ãããããªã詳細ãªèª¿æ»ã¨ãªã£ã¦ãã¾ããå´åçµåãçºè¡¨ãããã®ã§ã¯ããã¾ãããé常ã«è峿·±ããã®ã«ãªã£ã¦ãã¾ãã ä»åã¯ãæ±äº¬é½å ã§å¤«å©¦2人ãåä¾2äººã§æ®ããã¨ãããã¨ãããã¦å¹´åã¨ãããã¨ã«ã¤ãã¦ç°¡åã«ç¢ºèªãã¦ããããã¨æãã¾ãã å´åçµåã®èª¿æ»çµææ¦è¦ é£è²» ä½å± è²» å®¶å ·ã»å®¶äºç¨åè²» 被æã»å±¥ç©è²» 交éã»éä¿¡è²» æè²è²» æé¤å¨¯æ¥½è²» 交éè²»ãã®ä» ãã®ä»è²»ç¨ ã¾ã¨ã å´åçµåã®èª¿æ»çµææ¦è¦ æ±äº¬å°æ¹å´åçµåè©è°ä¼ï¼æ±äº¬å°è©ï¼ããã人éãããæ®ããã社ä¼ãããããã¦ã2019å¹´ãããæä½çè¨è²»ã®è©¦ç®èª¿æ»ã¨åæãç¶ç¶ãã¦è¡ã£ã¦ãã¾ãã ãã®èª¿æ»ã®æ¦è¦ã¯ä»¥ä¸ã¨ãªãã¾ãã 調æ»åçè ç´3200ã±ã¼ã¹
ãã®æç« ã¯ pandoc-hateblo ã§ tex ãã¡ã¤ã«ãã夿ãã¦ãã¾ã. PDF çã¯ãã¡ã 2021/10/15 追è¨: å¾åã®ãã¤ã¸ã¢ã³ãã¼ãã¹ãã©ããã«é¢ãã解説ã¯ãã¡ãã®ã»ããããããæ£ç¢ºã§ã ill-identified.hatenablog.com æ¦è¦æçºçãªã¿ã¤ãã«ã«è¦ããããç¥ããªãã, ç§ã¯ãããµã ãããããå§ããã®ã¯çé¢ç®ãªè©±ã â æ£ç´ã«è¨ãã°SEOã¨ãæ°ã«ãã¦ãã£ã¨æçºçãªã¿ã¤ãã«ã«ãããããªã©ã¨è¿·ã£ããã¯ããã. ãå ¨æ°èª¿æ»ã§ããã°æ¨æ¬æ½åºã®èª¤å·®ã¯ãªããªãã®ã ãã, 仮説æ¤å®ã¯ä¸è¦ã ãã¨ãã主張ãè¦ããã. ããããã¨èª¿ã¹ãçµæ, ãã®åé¡ãå³å¯ã«èª¬æãããã¨ããã¨æè¿ã®æç§æ¸ã«ã¯è¼ã£ã¦ãªã話é¡ãè¦ç¹ãå¿ è¦ãªãã¨ãåãã£ã. ãããä¸ã§ãåéããã¦ãã or ããåãã£ã¦ãªããããªäººãããã¾ã§ä½åº¦ãè¦ãããã®ã§, ãããæ©ã«å½åã®è³ªåã®åçã®ã¿ãªããé¢
æ±å¤§ãç¡åã§PDFå ¬éãã¦ããï¼çµ±è¨å¦ä¼ã®75å¨å¹´è¨å¿µåºçã21ä¸ç´ã®çµ±è¨ç§å¦ãã®3å 1ã¨2ã¯å®éã®çµ±è¨ãã¼ã¿ãç¨ãã¦ï¼åäºä¾ã¸ã®çµ±è¨å¦ã®å¿ç¨ææ³ï¼3ã¯æ©æ¢°å¦ç¿ã®äººãªã馴æã¿æ·±ãçµ±è¨è¨ç®ã解説 䏿ãªå¸è²©ã®æ¬ãè²·ãããã¯ï¼ãã®3⦠https://t.co/w2cSVIxmUI
ããã«ã¡ã¯ãããããã¡ãã§ãã è¡ãã¶ãã¶ãæ©ãã¦ã¿ãã¨ãçæ°ããå¶æã«è¢ãéããåã©ããã¡ã®ãã©ãã©ããç¬é¡ããæ°åã®ã¹ã¼ããã¾ã¨ã£ãæ°å ¥ç¤¾å¡ãã¡ã®å¸æã¨ä¸å®ã«æºã¡ã横é¡ã¨ããéããã¨ãå¤ããªãã¾ãããããããæ¥ã§ããã æ°ããç°å¢ã«è¡ãã°ãå¿ ããããã¨ã«ãªãèªå·±ç´¹ä»ãå®çªã®ãé¡ã¯ãè¶£å³ãã ã¨æãã¾ãããã¿ãªããã¯è¶£å³ã®æéãã©ããéããã§ããããï¼ ã¿ãªããããè¶£å³ã«ã©ããããã®æéã¨ãéãããã¦ããã®ãï¼ãã¯å人çã«ãææçã«ãèå³ãæ¹§ããã®ã§ãã¯ãã調ã¹ã¦ã¿ã¾ããï¼ã½(=´â½`=)ï¾ ã¿ããªè¶£å³ã«ã©ããããæéãããã¦ããã®ï¼ ã¾ãã¯ã社ä¼çæ´»åºæ¬èª¿æ»ã®çµæãããè¶£å³ã«ãããæéãé »åº¦ã®ãã¼ã¿ãã¿ããã¨æãã¾ãããªãæ¬èª¿æ»ã¯ã5å¹´ããã«å®æ½ããã¦ãããããããåå(2016å¹´)ã®çµæãããã£ã¦ããé åãã§ããä»åã¯ãã¼ã¿ãå ¥æã§ããç´è¿ã®å¹³æ23å¹´(2011å¹´)宿½ã®çµæããè¦ã¦ã¿
Apr 15, 2017186 likes119,870 viewsAI-enhanced description The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Berno
ã¢ã¸ã£ã¤ã«éçºãã¼ã åãã®ã³ã¼ãã³ã°ããæè¡é¡§åãScrum Allianceèªå®ã¹ã¯ã©ã ãã¹ã¿ã¼ç ä¿®ãªã©ã®ãã¬ã¼ãã³ã°ãæä¾ãã¦ãã¾ãããæ°è»½ã«ãç¸è«ãã ããï¼ååç¸è«ç¡æï¼ ããã«ã¡ã¯ã@ryuzeeã§ãã 以åã«ãæ¡ç¨ããã»ã¹ãçå£ã«èããã¨ããè©±ãæ¸ãã¾ããããã¡ãã£ã¨é¢é£ããè©±ãæ¸ããã¨æãã¾ãã æ¡ç¨ã«é¢ããã¡ããªã¯ã¹ãåããæ¡ç¨ããã»ã¹ã«çé¢ç®ã«åãçµãã§ããä¼ç¤¾ãªããã£ã¦ããã¨æããã¾ãããæ¡ç¨æ´»åãããã«ããã£ã¦ã¯ã¡ããªã¯ã¹ãåããã¨ãæã¾ããã§ããç¹ã«æé·ä¸ã®çµç¹ã§ããããã®äººãæ¡ç¨ãããå ´åããããä¸å®è¦æ¨¡ã®çµç¹ã§ããã¯é¡èã§ããåãã¹ãã¡ããªã¯ã¹ã«ã¯ä»¥ä¸ã®ãããªãã®ãããã¯ãã§ãã ç·å¿åè æ°æ¡ç¨åªä½å¥å¿åè æ°ã¨ã¼ã¸ã§ã³ãå¥ç´¹ä»è æ°ç¤¾å¡ã®ç´¹ä»ã«ãã£ã¦å¿åãæ¥ãæ°èªç¤¾ã®æ¡ç¨ãµã¤ãããå¿åãæ¥ãæ°å屿§ã§æ¸é¡é¸èãéã£ãæ°å屿§ã§ä¸æ¬¡é¢æ¥ãéã£ãæ°å屿§ã§äºæ¬¡é¢æ¥ãéã£
è¨äºã®ã¿ã¤ãã«éãã競馬ã§ååç100%ãè¶ ããæ¹æ³ãè¦ã¤ããã®ã§ããã®å ±åãããã ã¡ãªã¿ã«ããã®è¨äºã§ã¯æ ¸å¿é¨åã¯ã¼ããã¦æ¸ãã¦ãããããèªã¿é²ããã¨ãã¦ãã競馬ã§ååç100%ãè¶ ããæ¹æ³ããå ·ä½çã«ä½ãªã®ããç¥ããã¨ã¯ã§ããªããï¼ç§ã¯æ¬å½ã«æå¹ãªææ³ãä½ãã¡ãªãããç¡ãã®ã«å ¬éããã»ã©ã人好ãã§ã¯ãªãã®ã§ï¼ æ¬å½ã«æå¹ãªææ³ãè¦ã¤ãããã®ã§ããã°ãããªãèªèº«ããã¼ã¿ã¨åãåã以å¤ã®éã¯ç¡ãã ãã ãã大ã¾ããªä»çµã¿ï¼ãã¨å¤å°ã®ãã³ããï¼ã ãã¯æ¸ãã¦ããã®ã§ãããããªããç¬åã§ãã¼ã¿è§£æãè¡ããã¨ããæ°æ¦ã®ãã人ç©ãªã®ã§ããã°ããã®è¨äºã¯ããªãã®å©ãã¨ãªãã ããã ã¡ãªã¿ã«ãããã¯ååã®è¨äºã®ç¶ããªã®ã§ãèªãã§ãªãæ¹ã¯ãã¡ãããã©ããã stockedge.hatenablog.com ãªããºã®æªã¿ãæ¢ã ãã¦ãååããã®ç¶ãã§ããã ååã®è¨äºã®ãã³ã¡ã§ãååçãä¸ããããªããªããº
åºæ¬çã«ç«¶é¦¬ãªãã¦ããã¹ãã§ã¯ãªãã¨ç§ã¯æã£ã¦ãããè´å ã®åãåãå¤ãããã ãå®ããã«æ¯ã¹ãã°ã¾ã ã¾ãã ããããã§ãè³ãéã®20ï½30%ã¯è´å ã«åããããã¨ã«ãªãã*1 ãããä»åã¯ãã¡ãã£ã¨æãç«ã£ã¦ç«¶é¦¬ã®äºæ¸¬ããã£ã¦ã¿ããã¨ã«ããã çç±ã¯é¦¬å¸ã®å®ãã ãç§ã¯ç¾å¨ãè³ééãå°ãªã人éã§ãä¸å©ã«ãªããªãæè³å ãæ¢ãã¦ããã®ã ãã馬å¸ã®ä¸æ100åã¨ããå®ãã¯é åçã«æ ããæ ªã®å ´åã«ã¯ã©ããªå®ãæ ªã§ããæä½è³¼å ¥é¡ã¯æ°ä¸å以ä¸*2ãªã®ã§ãããç¨åº¦ã¾ã¨ã¾ã£ãè³éãå¿ è¦ã«ãªãã ã¾ãã競馬ã«ã¯æè¡ä»å ¥ã®ä½å°ï¼åªå次第ã§åå©ã§ããå¯è½æ§ï¼ãããã ä¾ãã°ãããªä¾ãããã ï¼ï¼ï¼ååããå²ãï¼è±æè³ä¼ç¤¾ãæ¥æ¬ã®ç«¶é¦¬ã§è稼ãããé©ãã®ææ³ - NAVER ã¾ã¨ã å½¼ãã¯çµ±è¨è§£æã«ãã£ã¦ç«¶é¦¬ã§åã£ã¦ããããã®æå¾ãé ãã¦ãããããããããããã¥ã¼ã¹ãåºãã¨ãããã¨ã¯ãè§£æè ã®è 次第ã§ã¯ç«¶é¦¬ã§åã¦ãå¯è½æ§ã
(Photo via VisualHunt) è¿½è¨ 2017å¹´3æç¾å¨ã®ææ°æ¸ç±ãªã¹ãã¯ãã¡ãã§ãã æè¿ã«ãªã£ã¦ã¾ãè²ã ã¨ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããç®æã人åãã®ãè¦ãæ¸ç±ãªã¹ãã¨ãè³æãªã¹ãã¨ããåºã¦ãã¦ããã§ãããå人çã«ã¯ä½ãã¨æãã¨ãããããã®ã§åãé©å½ã«ã¾ã¨ãã¦ããã¾ããåãããã¾ãããå®å ¨ã«ä¸»è¦³ã§æ±ºãããªã¹ããªã®ã§æå¥ãåºã¾ãããã¨æãã¾ããããã¯ãæ¯åã®ãã¨ãªã®ã§ã容赦ãã ãªããã¡ãã®ãªã¹ãã¯ããã¾ã§ããã¸ãã¹ã®ç¾å ´ã§ãã¼ã¿åæãçæ¥ã«ããï¼ãããã¨ãã¦ããï¼äººãã¡åãã®ãã®ã§ãããç ç©¶è å«ããã¬ãå¢ã®æ¹ã åãã®ãã®ã§ã¯ããã¾ããã®ã§ã©ããæªãããããäºæ¿ä¸ããã ã¡ãªã¿ã«æ¯åè¨ã£ã¦ã¾ãããã¢ãã£ãªã¨ã¤ãã¯å ¨ããã£ã¦ããªãã®ã§ããã«è²¼ããããªã³ã¯ãè¸ãã§çãããè³¼å ¥ããã¦ãåã®æã«ã¯ä¸éãå ¥ãã¾ãããæèã ãã¯ããããä¾å¤ã§ããï¼ç¬ï¼ã*1 åç´è åã5å ä¸å¿åç´è åãã¨
2015å¹´11æ26æ¥ äººé¡ã¯å°åé«é½¢åãã¾ãã Tweet TEDã«ãããä¼èª¬çãªãã¬ã¼ã³ã®ä¸ã¤ã«Hans Roslingã«ããStats that reshape your worldviewãããã1000ä¸å以ä¸ãè¦è´ããããã¬ã¼ã³ãªã®ã§è¦ããã¨ãããæ¹ãå¤ãã ãããå½¼ã¯Trendalyzerã¨ããèªä½ã®ã½ãããç¨ãã¦ãçµ±è¨ãã¼ã¿ãè¦è¦åãä¸çã®æ§ç¸ãä¼ãã¦ããã Trendalyzerã¯ããã§é å¸ããã¦ãããã¾ããå¾ã«Trendalyzerã¯Googleã«è²·åãããGoogle Visualization APIã¨ãã¦é å¸ããã¦ãããããã«ãæ§ã ãªé·æççµ±è¨ãã¼ã¿ãããã«æ´çã»éç´ããã¦ããã å½¼ã¯2006å¹´ã«è¡ããããã¬ã¼ã³ã«ããã¦ãå é²å½ã¯é·å¯¿ã§å°å®¶æãçºå±éä¸å½ã¯çå½ã§å¤§å®¶æã¨ããå å ¥è¦³ã¯ä»ãæ£ãããªããä¸çå ¨ä½ãå°ååã»é·å¯¿åã«åãã£ã¦ãããã¨ã示ãããæ¬¡ã®Vizã¯å½¼ã示
2015å¹´09æ11æ¥ æ¥æ¬ã¯ã©ã®åéã«ç ç©¶è²»ãéç¹çã«æå ¥ãã¦ããã®ã Tweet ç§ç è²»æ°è¦æ¡ææ°ããè¦ãå½å ã®ç ç©¶åé奿å大å¦ã»ç ç©¶æ©é¢ãåå½å 大å¦ã»ç ç©¶æ©é¢ã«ãããã¢ã¯ãã£ããã£ã®é«ãç ç©¶åéã«ç¶ãã¦ãç§ç è²»å¯è¦å第3å¼¾ã¨ãããã¨ã§ãä»åã¯ç§ç è²»å ¨ä½ã®åç ç©¶åéã¸ã®é åãè¦ã¦ã¿ããããããè¦ããã¨ã§ä»ã®æ¥æ¬ãã©ã®ç ç©¶åéã«éç¹çã«æè³ãã¦ããããè¦ãã¦ããã ç§ç è²»é åçµæ 次ã®ããªã¼ãããã¯å¹³æ26年度ç§ç è²»é åçµæã表示ãããã®ã§ãããé¢ç©ãé åé¡ã®å¤§ããã示ãã¦ãããç§ç è²»ãå¤ãé åããã¦ããåéã»ã©å¤§ãã表示ããã¦ãããç¾æç¹ã«ããã¦æãç§ç è²»ãæãããã¦ããã®ã¯å»æ¯è¬å¦ã§ããã2ä½ã®å·¥å¦ã¨3ä½ã®æ°ç©ç³»ç§å¦ããããããããå¤ããé«é½¢ç¤¾ä¼ã®ä¸ã«ãã£ã¦å»å¦ã®é²æ©ã¯æ¥æ¬ã®çå½ç·ã¨ãããã¨ã ããã䏿¹ã§æå¤ã«ãæ å ±å¦ã¯äººæå¦ãããå°ãªããä¸ããæ°ããã»ããæ©ããããã ãå¿ è¦ãªæ©æ
æ±äº¬ã«ãããé·æ¥æ°ãç夿¥çã®æ¥æ°ã®å¤å æ±äº¬ã«ãããé·æ¥æ°ãç夿¥ï¼æ¥æé«æ°æ¸©30â以ä¸ï¼ã®æ¥æ°ãçææ¥ï¼æ¥æé«æ°æ¸©35â以ä¸ï¼ã®æ¥æ°ãæ¥æä½æ°æ¸©25â以ä¸ã®æ¥æ°ã®ã°ã©ãã§ãã >> é·æ¥æ°ããç夿¥ï¼æ¥æé«æ°æ¸©30â以ä¸ï¼ããçææ¥ï¼æ¥æé«æ°æ¸©35â以ä¸ï¼ããæ¥æä½æ°æ¸©25âä»¥ä¸ âé·æ¥æ° âç夿¥ï¼æ¥æé«æ°æ¸©30â以ä¸ï¼ã®æ¥æ° â» å³ä¸ç·ç ´ç·ã¯ãè¦³æ¸¬å ´æã2014å¹´12æã«ç§»è»¢ãã¦ãããã¨ã示ãã âçææ¥ï¼æ¥æé«æ°æ¸©35â以ä¸ï¼ã®æ¥æ° â» å³ä¸ç·ç ´ç·ã¯ãè¦³æ¸¬å ´æã2014å¹´12æã«ç§»è»¢ãã¦ãããã¨ã示ãã âæ¥æä½æ°æ¸©25â以ä¸ã®æ¥æ° â» å³ä¸ç·ç ´ç·ã¯ãè¦³æ¸¬å ´æã2014å¹´12æã«ç§»è»¢ãã¦ãããã¨ã示ãã
IT Leaders ããã ï¼ ãã¯ããã¸ã¼ä¸è¦§ ï¼ æ¥çåå ï¼ å¸å ´åå ï¼ AIãIoTãããã°ãã¼ã¿ãªã©ç¥ã£ã¦ããã¹ã4ã¤ã®ä¿¯ç°å³ æ¥çåå æ¥çååè¨äºä¸è¦§ã¸ [å¸å ´åå] AIãIoTãããã°ãã¼ã¿ãªã©ç¥ã£ã¦ããã¹ã4ã¤ã®ä¿¯ç°å³ 2015å¹´7æ15æ¥(æ°´)ç°å£ 潤ï¼IT Leadersç·¨éé¨ï¼ ãªã¹ã ç±³å½ã§ã¯ãã³ãã£ã¼ãã£ãã¿ãªã¹ããªã©ã®æè³å®¶ããæ å½åéã®ä¿¯ç°å³ï¼ã©ã³ãã¹ã±ã¼ãï¼ã使ããå ¬éãã¦ããã±ã¼ã¹ããããåéã®åãã追ã£ãã伿¥ååãææ¡ããã«ã¯ç¶æ³ãä¸è¦§ãã¦ææ¡ã§ãã俯ç°å³ããã¨ã¦ãé½åãããããã ã ããããã®ç¨®ã®æ´çã¯æ¥æ¬ã®ITãªã¼ãã¼ã«ã¨ã£ã¦ã大ãã«åèã«ãªãã ä¾ãã°ãMachine Intelligenceï¼http://www.shivonzilis.com/ï¼ãããããã¹ãã¼ããã·ã³åéã®ä¿¯ç°å³ã ããã³ã¢æè¡ã ãã§ãArtificial Intel
èªæ®ºã®æç©ºéç«å¦ http://ikiru.ncnp.go.jp/ikiru-hp/genjo/toukei/index.html å°ç ç©¶æ°ã®ã¡ã¿åæ Noma, H. Statist. Med. 2011, 30 3304â3312 K=10以ä¸ã§ã®ä¿¡é ¼åºéãåä¸ããã Topics ã¯ããã« æ¨æ¸¬çµ±è¨ã®åºæ¬ æå°¤æ¨å®ã¨ãã¤ãºæ¨å® MCMCã«ãããã¤ãºæ¨å®
çµ±è¨å¦ã®å°éå®¶ã§ã¯ãªããããå 容ã«è²¬ä»»ã¯æã¡ã¾ãããå 容ã«ééããããã°ãææãã¦ãã ããã¨å¹¸ãã§ããã§ããéãè¨æ£ãã¦ããã¾ãã ãã¤ãºçµ±è¨å¦ã®åºç¤æ¦å¿µããWçè«ã¾ã§æ¦è«çã«ç´¹ä»ããã¹ã©ã¤ãã§ãï¼æ°çã»è¨ç®ç§å¦ãã¥ã¼ããªã¢ã«å®è·µã®ãã¥ã¼ããªã¢ã«è³æã§ãï¼å¼ç¨ãã¦ããipynb㯠* http://nhayashi.main.jp/codes/BayesStatAbstIntro.zip * https://github.com/chijan-nh/BayesStatAbstIntro ãåç §ãã ããï¼ ä»¥ä¸ï¼ã¨ã©ãã¿ï¼ * 52 of 80ï¼KL(q||p)â KL(q||p)ã§ã¯ãªãKL(q||p)â KL(p||q). * 67 of 80ï¼2ν=E[V_n]ã§ã¯ãªãE[V_n] â 2ν (nââ). * 70 of 80ï¼AICã®ç¬¬2é 㯠d/2n ã§ã¯ãªã d/n. * 76 of
対å¿ã®ãªã 2 群éã®éçæ¤å®ææ³ã¨ãã¦ãæãæåãªã®ã¯ Student ã® t æ¤å®ã§ããããã 以åãStudent ã® t æ¤å®ã«ã¤ãã¦ã®è¨äºãæ¸ãã¾ããã å°æ¨æ¬åé¡ã¨ tæ¤å® - ã»ããç¬ã ããããStudent ã® t æ¤å®ã¯ãç忣æ§ãä»®å®ãã¦ãããããä¸ç忣ã®ç¶æ³ã«ã対å¿ã§ããããã«ãWelch ã® t æ¤å®ã使ãã®ãã»ãªãªã¼ã¨ãªã£ã¦ãã¾ãã ãã ããããã 2ã¤ã®æ¤å®ã¯åå¸ã®æ£è¦æ§ãä»®å®ãã¦ãããããæ£è¦æ§ãä»®å®ã§ããªãç¶æ³ã§ã¯ãMann-Whitney ã® Uæ¤å®ã¨ãããã®ãåºã使ããã¦ãã¾ãã Mann-Whitney ã® Uæ¤å®ã¯ãæ£è¦æ§ãä»®å®ããªããã³ãã©ã¡ããªãã¯æ¤å®ã¨ãã¦æåã§ãããä¸ç忣ã®ç¶æ³ã§ãã¾ãæ¤å®ã§ããªãã¨ããåé¡ããããã¨ã¯ãã¾ãç¥ããã¦ãã¾ããã 仿¥ã¯ããããã®åé¡ããã¹ã¦è§£æ±ºãããæ£è¦æ§ãç忣æ§ãä»®å®ããªãæå¼·ã®æ¤å®ãBrunner-
æ±äº¬å¤§å¦åºçä¼ããåºã¦ãããåºç¤çµ±è¨å¦I çµ±è¨å¦å ¥éãã¨ããæ¬ãããã æ±äº¬å¤§å¦æé¤å¦é¨çµ±è¨å¦æå®¤ãç·¨ã (1991). ãåºç¤çµ±è¨å¦I çµ±è¨å¦å ¥éã æ±äº¬ï¼æ±äº¬å¤§å¦åºçä¼ï¼ ãã®æ¬ã¯ãçµ±è¨ãå¦ã¶éã«ããããããããä¸åã§ãããä¾ãã°ãã¦ã§ãä¸ã«ããè¨äºã§ããçµ±è¨å¦å ¥éããæãã¦ãããã®ã«ä»¥ä¸ã®ãããªãã®ãããã 2014å¹´æ¥çï¼ãã¸ãã¹ã«ããããã¼ã¿åæã®ãããç®æããªãæãã¦ããã¹ã12åï¼é座ã§åãData Scientistã®ããã°ï¼ ä¸å¹´ã§èº«ã«ä»ããï¼Rã¨çµ±è¨å¦ã»æ©æ¢°å¦ç¿ã®4ã¹ãããï¼iAnalysis ï½ãã¨ãããã®è§£ææ¥è¨ï½ï¼ çµ±è¨åæãå¦ã¶ããã®æ¸ç±20é¸ï¼XICA-Labs ãã¼ã¿ã»çµ±è¨åæç ç©¶æï¼ ããã§ã¯ããªããã®æ¬ã¯ããããããã®ã ãããï¼ ããã¦ãã©ããã人ããã®æ¬ãèªãã¹ããªã®ã ãããï¼ ã¿ã¤ãã«ã«ãçµ±è¨å¦å ¥éãã¨ããããã«ãçµ±è¨ã®åå¿è ã«ã¨ã£ã¦è¯ãæ¬ãªã®ã ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}