深層å¦ç¿(Deep Learning)ã¨ãã¤ãºçæé©å(Bayesian Optimization)ã«ããå»ç¨ç»åèªå½±æ¯æ´ã®è©¦ã¿

The DeepMind acquisition was the starting gun for a deep learning startup goldrush. Most of the new companies are driven by the assumption that there is a big opportunity in bringing deep learning âto the massesâ - i.e., all of the companies and startups that could benefit from the technology, but donât have the in-house expertise that Google, Facebook, Yahoo, and Microsoft do. I think they key i
livingdebt @livingdebt å®è·µå¦ #ã¨ã¯ä½ã ï¼ãç´ä¼åå±æ¸åºæ°å®¿æ¬åºãå®è·µå¦æ¢è¨ªââæ¦å¿µåæã®ç¤¾ä¼å¦ï¼ã¨ã¹ãã¡ã½ããã¸ã¼ï¼ããã¯ãããæ¸æ£æ£çï¼æ¬ã®ãä»ããããã ãç¡æé å¸ã®å°ååãããã¯ã¬ã¤ãã¨ãã¦è³ªãéã¨ãã«é常ã«å å®ããå 容ã®ãã®ã¨ãªã£ã¦ããã®ã§â¦ã http://t.co/QzswTrGdXI 2014-03-08 13:17:28 livingdebt @livingdebt ãâ¦ããã«åå ãã¦ãã人ãã¡ãã©ã®ããã«â¦äºãã®è¡çºãæ´»åãç·¨ã¿ããã¦ããããï¼ãå®è·µãããæãããï¼ãå¦ãã¨ãããã¨ãã ä¸æåçï¼2001ï¼ãç¥è社ä¼å¦ããç¥èã®å®è·µå¦ã¸ããèªãã°è¯ãã®ãã 2014-03-08 13:21:31
19. ã¾ãå ¥åãã¼ã¿ãç¨æ var input [1.0, [1.0, [1.0, [0.0, [0.0, [0.0, ]); = $M([! 1.0, 0.0, 1.0, 0.2, 0.9, 0.1, 0.0, 0.0, 0.0, 0.8, 0.0, 1.0, 0.0],! 0.0],! 0.0],! 1.0],! 1.0],! 1.0]! 21. ã¢ãã«ãä½æãã // n42ãrequireãã! var n42 = require(ân42');! ! // Stacked Denoised Autoencoder! // ãä½æãã! // å ¥å4次å ,第2,3層3次å ,åºå2次å ! var sda = new n42.SdA(input, label, 4, [3, 3], 2);
ãµã¨æ°ã«ãªã£ãã®ã§èªãã§ã¿ãããå½ãããã²ããã å¼·åå¦ç¿ãã¦ã§ããµã¤ãã®æé©åã«å©ç¨ããæ¹æ³ã«é¢ãã¦ã®æ¬ã§ãA/Bãã¹ãã®ä½ãåé¡ãã説æãã¦ãããå æããããã®ã¢ã«ã´ãªãºã ã3ã¤ç´¹ä»ãã¦ãã Epsilon-greedy SoftMax UCB1 ã³ã¼ãã¯Pythonã§æ¸ããã¦ããã®ã§èªã¿ãããã å®éã®ãã¸ãã¹ã§ã¯ãA/Bãã¹ãã§ç確çã§ABæ¯ãåããããã«å£ã£ã¦ããæ¹ã®ãã¹ãã®åã ãåçãæ¸ã£ã¦ãã¾ããããã¨ãã£ã¦ãã¹ããããªãã¨ããããããµã¤ããè¦åºãæ©ä¼ããªããªã£ã¦ãã¾ããã¤ã¾ãexploreãæ大åããããexploitãæ大åãããã¨ãããããªã¸ã¬ã³ããæ±ãããã¨ã«ãªãã æ±ãããã¦ããã®ã¯ãå£ã£ã¦ãããµã¤ããã¶ã¤ã³ã«å¯¾ãããã¹ãï¼æ失ï¼ãæå°ã«ãã¤ã¤ãã¹ããªãµã¤ããã¶ã¤ã³ã«åæãã¦ããææ³ã§ãããããããåé¡ãMultiarmed Bandit Probremã¨å¼ã¶ããã
ã¾ã githubã«ã¯pushãã¦ããªãã®ã§ããããããããã®çµã¿è¾¼ã¿åç»åæ¤ç´¢ã¨ã³ã¸ã³otamaã«è¨éå¦ç¿ãç¨ãã¦ä¸ãããããã¼ã¿ã«ãã£ãç»åéã®è·é¢é¢æ°ãå¦ç¿ãã¦ããã使ã£ã¦æ¤ç´¢ããã¨ãããã©ã¤ããå ¥ããã®ã§ãå è¡çãªãã¢ã¨ãã¦ã¢ãã¡é¡é¡ä¼¼æ¤ç´¢v3ãä½ã£ã¦ã¿ã¾ããã è¨éå¦ç¿ã¯ããã¯ãã«éã®è·é¢ã®è¨ãæ¹ãæ©æ¢°å¦ç¿ã§æ±ºããã¿ãããªåéã§ãã ã¢ãã¡é¡é¡ä¼¼æ¤ç´¢v3 AnimeFace Search v3 - Otama LMCA_VLAD_HSV Driver randomãã¿ã³ãæ¼ãã¨é¡ç»åãã©ã³ãã ã«åºãã®ã§ã©ããã¯ãªãã¯ããã¨ãããã¯ã¨ãªã«æ¤ç´¢ãã¾ããcolor weightã¯è²ã®éã¿ã調ç¯ãããã©ã¡ã¼ã¿ã¼ã§ã1ã«ããã¨è²ã ãã§æ¤ç´¢ãã¾ãã0ã«ããã¨å½¢ç¶ããã¯ã¹ãã£ã ãã§æ¤ç´¢ãã¾ããçµæç»åã®ä¸ã®æ°åã¯é¡ä¼¼åº¦çãªãã®ã§ããã®æ¨ªã®gglã¯å ç»åãGoogle Search by Imag
Twitterææ åææ ãããå©ç¨ãããã¨ããããçµæ§éããã¦ã大éã®å¦çãå®è¡ããã®ã¯ç³ã訳ãªãâ¦ãã¨æãããããèªåã§ã³ã¼ããæ¸ãã¦ãã¾ããã¨æãã調ã¹ã¦ããã¨ãããæ±å±±æ彦, ä¹¾å¥å¤ªé, æ¾æ¬è£æ²», è¿°èªã®é¸æé¸å¥½æ§ã«çç®ããåè©è©ä¾¡æ¥µæ§ã®ç²å¾, è¨èªå¦çå¦ä¼ç¬¬14å年次大ä¼è«æé, pp.584-587, 2008.ï¼æ¥æ¬èªè©ä¾¡æ¥µæ§è¾æ¸ï¼ãããã¾ããã æ¥æ¬èªè©ä¾¡æ¥µæ§è¾æ¸ï¼åè©ç·¨ï¼ver.1.0ï¼2008å¹´12æçï¼pn.csv.m3.120408.trim.gz ããã¦ã³ãã¼ãâ解åããæ¡å¼µåã«.txtãè¨å®ããé©å½ãªã¨ãã£ã¿ã§éãã¾ãã Pythonæ¨æºã¢ã¸ã¥ã¼ã«ã®csvã§èªã¿è¾¼ã¾ããã¨ãã«ãã¿ãåºåããä¸æãèªã¿è¾¼ããªãã£ãã®ã§ã\tã,ã«ç½®æãã¦ãä¿åãã¾ã(Mac OSXã®å ´åã\ã¯option+\ã§ããã¯ã¹ã©ãã·ã¥ãå ¥å)ã ã¾ãã以ä¸ã®ãµã¤ããåèã«ãYahoo!ã®
解ææ¹æ³ æ©æ¢°å¦ç¿ã使ã£ã¦ã¾ãã 解æä¾ï¼ãåçºããå«ãTweetã®ææ æ¨ç§» 3.11ã®åçºäºæ ã®å½±é¿ã§ã人ã ã«å¦å®çãªå°è±¡ãä¸ãããã¨ãæ°å¤ä¸ã«åæ ããã¦ããã ãã¼ã¯ã¼ã/ã¦ã¼ã¶ã¿ã¤ã ã©ã¤ã³ã®ææ æ¨å®ï¼è¯å®/å¦å®æ§ ã®å¤å®ï¼ ææ°ã®50Tweetã«ã¤ãã¦è§£æãã¾ãã å¦å®çãªçºè¨ã®å¤ãã¦ã¼ã¶ãå¦å®çãªå°è±¡ã®ãã¼ã¯ã¼ãã¯ãªã¬ã³ã¸è²ãå¤ããªãã¾ãã æé帯ã«ãã£ã¦ã¯çµæãè¿ãã¾ã§1åããããããã¾ããéè¦ãããã°ãã£ã¨å®å®ããã¾ãã [2012/01/02 22:00]ã¡ãã£ã¨ä»æ··éä¸ã¿ãããªã®ã§åæ¢ãããããããªãã§ããããã§ãªãã¦ããä¸æéã«350åã¾ã§ããã§ãã¾ããã -- åæçµæ -- P/Nå¤å®ï¼è¯å®/å¦å® ã®å¤å®ï¼ API ï¼»API URLï¼½ : http://mueki.net/twana/api.php [使ãæ¹ï¼½ : POSTãã©ã¡ã¼ã¿ã®qã«è§£æãããææ¸ãã®ãã¦ã¢ã¯ã»
ããã°ã㯠@sleepy_yoshi ã§ãï¼Machine Learning Advent Calendar 2012 ã®11æ¥ç®ãæ å½ãã¾ãï¼ãµã¢ã¢æéã§ã¯ã¾ã 12æ11æ¥ãªã®ã§éã«åãã¾ãããï¼ä»æ¥ã¯ãã¤ããªç´ æ§ãã¯ãã«ã®å ç©è¨ç®ã«SSE4.2ã®popcntå½ä»¤ãç¨ãã¦é«éåãããã¨ã§k-NNåé¡å¨ãé«éåãã話ã«ã¤ãã¦æ¸ãã¾ãï¼ ãã®ããã°ã§ã¯æ®æ®µã§ãã調ã§æ¸ãã¦ãã¾ããï¼ä»æ¥ã¯ãªãã¨ãªãã§ãã¾ã調ã§æ¸ãã¾ãï¼ k-NN (k Nearest Neighbor) åé¡å¨ã¯ã©ãã«ãäºæ¸¬ãããäºä¾ã«å¯¾ãã¦ï¼è¨ç·´ãã¼ã¿ã¨ãã¦ä¸ããããã©ãã«ä»ãäºä¾éåã®ä¸ããkè¿åã®äºä¾ã®ã©ãã«ãç¨ãã¦äºæ¸¬ããï¼ã¨ããåé¡å¨ã§ãï¼kè¿åãæ±ããããã«ï¼è¨ç·´ãã¼ã¿ã«å«ã¾ããäºä¾å ¨ã¦ã«å¯¾ããé¡ä¼¼åº¦ãè¨ç®ããå¿ è¦ãããã¾ãï¼é¡ä¼¼åº¦ã«ã¯æ§ã ãªå°ºåº¦ãå©ç¨ããã¾ããï¼ããã§ã¯å ç©ã¨ãã¾ãï¼ãã®ããkåã®è¿åãçºè¦ã
ææ¥ã§SVMã«ã¤ãã¦ç¿ã£ããã©ãå®éã«å®è£ ãããã¨ãªãã£ããããã£ã¦ã¿ããç°¡åã£ã¦è¨ããã¦ããã©ãå¶ç´ä»ã2次è¨ç»åé¡ã®å®è£ ãçµæ§å¤§å¤ã ã£ãï¼åæããªãã±ã¼ã¹ã¨ããããããã£ãããå¶ç´æ¡ä»¶ãéµå®ãããï¼ åèã«ããã®ã¯ã以ä¸ã®æ¬ãããã¼ã¸ãã http://www.amazon.co.jp/%E3%82%B5%E3%83%9D%E3%83%BC%E3%83%88%E3%83%99%E3%82%AF%E3%82%BF%E3%83%BC%E3%83%9E%E3%82%B7%E3%83%B3%E5%85%A5%E9%96%80-%E3%83%8D%E3%83%AD-%E3%82%AF%E3%83%AA%E3%82%B9%E3%83%86%E3%82%A3%E3%82%A2%E3%83%8B%E3%83%BC%E3%83%8B/dp/4320121341/ref=sr_1_1?ie=UTF8&qi
ã·ã¥ã¼ãã£ã³ã°ã²ã¼ã ãè¦æã§ãã°ã©ãã£ã¦ã¹ã®ï¼é¢ãã¯ãªã¢ã§ããªã人ã§ãã³ã³ãã¥ã¼ã¿ã«ï¼æéãããä»»ããã°ã¯ãªã¢ãã¦ãããããããGAãªãããéºä¼çã¢ã«ã´ãªãºã ã使ã£ã¦ã°ã©ãã£ã¦ã¹ãã³ã³ãã¥ã¼ã¿ã«å¦ç¿ãããã¯ãªã¢ãã¦ããã¾ããããªãª:sm18721450 ã°ã©ãã£ã¦ã¹ãªã¹ãï¼mylist/38062710次:sm20411696
æ大ã¨ã³ãããã¼ã¢ãã«ã®ç¶ãã ä»åã¯ãCRFï¼Conditional Random Fields, æ¡ä»¶ä»ã確çå ´ã¨ãï¼ ä¸è¬*1ã«ã¤ãã¦ã ååãã»å¾ãåãã¢ã«ã´ãªãºã ã«ã¤ãã¦ã¯æ¸ããªãã ã¾ããä¸è¬ã«é¢é£ãæ·±ãã¨ããã MEMM ã¨ãããã®ã«ã¤ãã¦ããããã§ã¯è§¦ããªãã CRF ã¨ã¯ã©ããããã®ãã ä¸è¨ã§ããã¨ãæ大ã¨ã³ãããã¼ã¢ãã«ã®èãæ¹ãç³»åã©ããªã³ã°ã«å¿ç¨ãããã®ã ããã§ãç³»åã©ããªã³ã°ã¨ããã¿ã¹ã¯ã«ã¤ãã¦ç°¡åã«èª¬æãã¦ããã ãã¨ãã°ãåè©ã¿ã°ä»ãã®ãããªãã®ãããã è±èªã®ããã«åèªãåããã¦ããè¨èªã§ãããããã®åèªã«å¯¾ãã¦ãåè©ããåè©ããªã©ã®åè©ã¿ã°ãã¤ããã¨ããã¿ã¹ã¯ã å¤å ¸ç㪠"time flies like an arrow"*2 ãä¾ã«ã¨ãã ããã«ã¯è¤æ°ã®è§£éãããããã®ä¸ã«ã¯ æã¯ç¢ã®ããã«éãå»ãï¼å é°ç¢ã®ãã¨ãï¼ æãã¨ã¯ç¢ã好ã ã®ãããªãã®
ä»åã¯ãCRF ã®ååãã»å¾ãåãã¢ã«ã´ãªãºã ã«ã¤ãã¦ã å¯å¤æ¬¡æ° CRF ã®ã¢ã«ã´ãªãºã ã¨ã®å¯¾æ¯ã®ããã«æ¸ãã¦ããã ååãã»å¾ãåãã¢ã«ã´ãªãºã ã¯ã1 次㮠CRF ã§ä½¿ããã*1ã é«æ¬¡ã«å¿ç¨ããæ¹æ³ãèããããªããã¨ããªãããè¨ç®éã次æ°ã«å¯¾ãã¦ææ°çã«å¢å ããããããã¾ãç¾å®çã§ã¯ãªãã 1 次㮠CRF ã§ä½¿ãç´ æ§é¢æ°ã¯ãæèã«é¢ããç¹å¾´ã¨ é·ã 1 ã¾ã㯠2 ã®ã©ãã«åãçµã¿åããããã®ãé·ã 1 ã®ãã®ã¯ç¶æ ç´ æ§ã2 ã®ãã®ã¯é·ç§»ç´ æ§ã¨å¼ã¶ãã¨ãããã ä¾ã¨ãã¦ååã¨åããã®ã使ãã æ㯠"time flies like" ã¨ããä¸ã¤ã®åèªã§ãå¯è½ãªã©ãã«ã¯ N, V, A ã® 3 ã¤ã ç´ æ§é¢æ°ã¯ã次㮠5 ã¤ã æèã«ããããããä»ã®ä½ç½®ã§ã©ãã«ã "N" ã®æã« 1 ã«ãªããã®ãéã¿ã¯ 2ã æèã«ããããããä»ã®ä½ç½®ã§ã©ãã«ã "V" ã®æã« 1 ã«ãªããã®ãé
. ...... çµ±è¨çå¦ç¿çè«ãã¥ã¼ããªã¢ã«: åºç¤ããå¿ç¨ã¾ã§ â é´æ¨â大æ â æ±äº¬å¤§å¦ æ å ±çå·¥å¦ç ç©¶ç§ æ°çæ å ±å¦å°æ» IBIS 2012@ç波大å¦æ±äº¬ãã£ã³ãã¹æäº¬æ ¡è 2012 å¹´ 11 æ 7 æ¥ 1 / 60 æ§æ ...1 ã¯ããã«: çè«ã®å½¹å² ...2 çµ±è¨çå¦ç¿çè«ã¨çµé¨éç¨ ...3 ä¸æ§ãã¦ã³ã åºæ¬çãªä¸çå¼ Rademacher è¤éã㨠Dudley ç©å å±æ Rademacher è¤éã ...4 æé©æ§ è¨±å®¹æ§ minimax æé©æ§ ...5 ãã¤ãºã®å¦ç¿çè« 2 / 60 æ§æ ...1 ã¯ããã«: çè«ã®å½¹å² ...2 çµ±è¨çå¦ç¿çè«ã¨çµé¨éç¨ ...3 ä¸æ§ãã¦ã³ã åºæ¬çãªä¸çå¼ Rademacher è¤éã㨠Dudley ç©å å±æ Rademacher è¤éã ...4 æé©æ§ è¨±å®¹æ§ minimax æé©æ§ ...5 ãã¤ãºã®
æ©æ¢°å¦ç¿ã¨ã¯ï¼Arther Samuel ã«ããã°ãæ示çã«ããã°ã©ãã³ã°ãããã¨ãªãï¼ã³ã³ãã¥ã¼ã¿ã«è¡åãããããã«ããç§å¦ã ã®ãã¨ã§ãï¼ æ´å²çã«ã¯ï¼äººå·¥ç¥è½ã®ç 究åéã®ä¸ã§ï¼äººéãæ¥ã ã®å®ä½é¨ããå¾ãããæ å ±ã®ä¸ããï¼å¾ã«åå©ç¨ã§ããããªç¥èãç²å¾ãã¦ããéç¨ãï¼ã³ã³ãã¥ã¼ã¿ã«ããã¦å®ç¾ãããã¨ããåæ©ããçãã¾ããï¼ ç¾å¨ã§ã¯ï¼æ°å¤ã»æåã»ç»åã»é³å£°ãªã©å¤ç¨®å¤æ§ãªãã¼ã¿ã®ä¸ããï¼è¦åæ§ã»ãã¿ã¼ã³ã»ç¥èãçºè¦ãï¼ç¾ç¶ãææ¡ãå°æ¥ã®äºæ¸¬ããããããã®ã«ãã®ç¥èãå½¹ç«ã¦ããã¨ãç®çã¨ãªã£ã¦ãã¾ãï¼ ãã¾ãã¾ã®ç§è¦ã«åºã¥ãã¦ï¼æ©æ¢°å¦ç¿ã®å種ã®åé¡ãæ´çãã¾ããï¼ â ä»åéã¨ã®é¢é£â 確çè«ï¼æ©æ¢°å¦ç¿ã§æ±ããã¼ã¿ã¯ï¼ãããããªä¸ç¢ºå®è¦ç´ ã®å½±é¿ãåãã¦ããï¼ãããã¦çããææ§ããæ±ãããã«å©ç¨ããã¾ãï¼ çµ±è¨ï¼è¦³æ¸¬ããããã¼ã¿ãå¦çããææ³ã¨ãã¦é·ãç 究ããã¦ããããæ·±ãé¢é£ãããã¾ãï¼ç¹
岡éåã§ããDeep Learningãååéã®ã³ã³ããã£ã·ã§ã³ã§åªåã話é¡ã«ãªã£ã¦ãã¾ããDeep Learningã¯7ã8段ã¨æ·±ããã¥ã¼ã©ã«ãããã使ãå¦ç¿ææ³ã§ãããã§ã«ãç»åèªèãé³å£°èªèãæãæè¿ã§ã¯ååç©ã®æ´»æ§äºæ¸¬ã§åªåããããæ¢åãã¼ã¿ã»ã»ããã§ã®æé«ç²¾åº¦ãéæãã¦ãã¾ãã以ä¸ã«å¹¾ã¤ãä¾ãããã¾ãã ç»åèªè LSVRC 2012 [html]  åªåãã¼ã ã¹ã©ã¤ã [pdf], ã¾ã¨ãã¹ã©ã¤ã[pdf] Googleã«ãã巨大ãªNeuralNetãå©ç¨ããç»åèªèï¼ç«èªèã¨ãã¦æåï¼[paper][slide][æ¥æ¬èªè§£èª¬] ã¾ããååéã®ãããã«ã³ãã¡ã¬ã³ã¹ã§Deep Learningã®ãã¥ã¼ããªã¢ã«ãè¡ããããµã¼ãã¤è«æãããã¤ãåºã¾ãããããããæ¥å¹´ä»¥éãããã話ãå¢ãã¦ãããã¨ãèãããã¾ãã ICML 2012 [pdf] ACL 2012 [pdf] CVPR
ãã1年以ä¸ããã¦é³å£°ä¿¡å·å¦çã®åå¼·ããã¦ãã¾ããï¼Pythonã§é³å£°ä¿¡å·å¦çï¼ããããã§å ·ä½çãªã¢ããªã±ã¼ã·ã§ã³ã¨ãã¦é¡ä¼¼æ¥½æ²æ¤ç´¢ã®å®é¨ããã¦ã¿ãã®ã§ã¬ãã¼ããã¾ã¨ãã¦ããã¾ããè¨èªã¯Pythonã§ãã åã« é¡ä¼¼ç»åæ¤ç´¢ã·ã¹ãã ãä½ããï¼2009/10/3ï¼ Visual Wordsãç¨ããé¡ä¼¼ç»åæ¤ç´¢ï¼2010/2/27ï¼ ã¨ããç»åã®é¡ä¼¼æ¤ç´¢ã«é¢ããã¨ã³ããªãæ¸ãã¾ããããä»åã¯ç»åã§ã¯ãªãé³æ¥½ã対象ã«é¡ä¼¼æ¤ç´¢ããã£ã¦ã¿ããã¨æãã¾ãï¼ ä»åä½ãé¡ä¼¼æ¥½æ²æ¤ç´¢ã·ã¹ãã ã¯ãå¾æ¥ããããããã¢ã¼ãã£ã¹ãåãæ²åãªã©ããã¹ãã§æ¤ç´¢ããã·ã¹ãã ã購買履æ´ããã¨ã«ãªã¹ã¹ã¡ããå調ãã£ã«ã¿ãªã³ã°ãã¼ã¹ã®ã·ã¹ãã ã¨ã¯ç°ãªãã¾ããWAVEãã¡ã¤ã«ãMP3ãã¡ã¤ã«ãªã©ã®é³æ¥½æ³¢å½¢ãã®ãã®ãå ¥åã¨ããã®ãç¹å¾´ã§ãããã¨ãã°ããå ·ä½çãªã¢ã¼ãã£ã¹ããæ²åã¯ç¥ããªãããã©ããã®æ²ã¨ã¡ããã£ãé°å²æ°ãä¼¼ãæ²ãã»
PRML復ã ç¿ã¬ã¼ã³#3ã«åå ãã¦çºè¡¨ãã¾ããï¼ä¼å ´ä¿ã¨ä¼å ´ãæä¾ãã¦ãã ãã£ã@showyouããã¨DeNAããã«æè¬ç³ãä¸ãã¾ãï¼æ¯åº¦ãªããç´ æ´ãããä¼å ´ï¼ããã¦ç´ æ´ãããæ¯è²ï¼ ä»åããæ°ãã試ã¿ã§ååã®å¾©ç¿å 容ãã¾ã¨ãã¦ã¿ããã¨ã«ãã¦ã¿ãï¼ãã¡subsectionã1æç¨åº¦ã«ã¾ã¨ãã¦ï¼ããã¼ããã«ãã¨ãããã¤ã³ããã¾ã¨ãã¦ã¿ããã®ï¼è³æãã¾ã¨ãã¦åã£ã¦ã¿ã¦ã¯ããã¦æ°ãä»ããã¨ããã£ãã®ã§æ¬¡åããã²ãã£ã¦ã¿ããï¼ çºè¡¨è³æã¯ä»¥ä¸ã®ã¨ãã ååã¾ã§ã®ãããã PRML復ã ç¿ã¬ã¼ã³#3 ååã¾ã§ã®ãããã View more presentations from sleepy_yoshi 3.1.3-3.1.5 (代æ) PRML復ã ç¿ã¬ã¼ã³#3 3.1.3-3.1.5 View more presentations from sleepy_yoshi æ¥ç¨ã®é½åã§ä»ååå ã§ããªãæ¹ã®ä»£
ååk-NNãã¢ãä½ã£ãå¾ã«ããããã¼ã»ãããã³ãåãããã«ãã¢ä½ãããããã?ãã¨æã£ãã®ã§å®è£ ãã¦ã¿ãï¼ä»åº¦ã¯ã¯ãªãã¯ã§ãã¼ã¿ç¹ã追å ã§ããããã«ãããï¼ãµã³ãã«é¸ææ¹æ³ãå¯å¤ã«ãããï¼PAã®æ´æ°ã®æ§åãå¯è¦åããã¨é¢ç½ãããã¨æã£ã¦å¾ããPAã追å ãã¦ã¿ãï¼ ãã¼ã»ãããã³ã¯èª¤åé¡ãããµã³ãã«ãæ£ããåé¡ããããã«è¶ å¹³é¢ãæ´æ°ããç·å½¢èå¥å¨ã§ï¼Passive-Aggressive (PA) ã¯æ失ãçºçããããµã³ãã«ã«å¯¾ãã¦æ失ã0ã«ãªãï¼éã¿ãã¯ãã«ã®å¤åéãæå°ã«ãªãããã«è¶ å¹³é¢ãæ´æ°ããã¢ã«ã´ãªãºã ï¼ ãªã³ã©ã¤ã³å¦ç¿ã«ã¤ãã¦ãã£ãããã俯ç°ã¯ä»¥ä¸ã®è³æãªã©ããåç §ï¼ TokyoNLP#5ã§ããã¼ã»ãããã³ã§æ¥½ãã仲éãã½ã½ã½ã½ããããçºè¡¨ãã¾ãã ã¨ããããã§k-NNã¨åãããã«å ¬éï¼ Perceptron/PA Demo ver.1.0 使ãæ¹ Update onceãã¿ã³ã§
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}