ååã¯ããã¼ãªã¨å¤æã¨ã¯å ¥åå¤ãã°ã«ã°ã«å転ãããªãã足ãåãããè¨ç®ã§ããã¨ãããã¨ã説æãã¾ãããä»åã¯ããªãå転ãããªãã足ãåãããã¨å¨æ³¢æ°å解ã§ããã®ãã¨ãã話ã§ãã ããããã¦é¢æ£ãã¼ãªã¨å¤æã®å¼ãæ¸ãã¦ããã¾ãã ãã¦ãããã§ã¯å ¥åå¤fjã¯ã¬ã¦ã¹å¹³é¢å ã§çéåéåããã波形ã¨ãã¾ããå転æ¹å㯠cosθ+isinθ ã®Î¸ãå¢å ããæ¹åã§ãã é¢æ£ãã¼ãªã¨å¤æã®å¼ãããè¦ãã¨ãeã®ã¹ãä¹é¨åã«ãã¤ãã¹ã®ç¬¦å·ãä»ãã¦ãã¾ããããã¯ãå ¥åä¿¡å·ãéå転ããããã¨ãæå³ãã¦ãã¾ãããã®ãéå転ãã¨ããã®ããã½ã§ãã 0ããnã¾ã§ã®éã«ã¡ããã©1å転ãããã¯ãã«ãå ¨é¨è¶³ãåãããã¨ããäºãã«æã¡æ¶ãåã£ã¦0ãã¯ãã«ã«ãªãã¾ãã ãããéæ¹åã«1å転ãããªãã足ãåãããã¨ãå ã®ãã¯ãã«ã®å転ãç¸æ®ºããã¦å ¨ã¦ã®ãã¯ãã«ã®åããæããçµæã¯nåã®é·ãã®ãã¯ãã«ã«ãªãã¾ãã(ãã¯ãã«ã®åãã¯æ
ãã¼ãªã¨å¤æã¨ãã®æ§è³ª ä¿¡å·å¤§å¦å·¥å¦é¨ãäºæ¾¤è£å¸ 1. ã¯ããã« æ¬ç« ã§ã¯ããã¼ãªã¨å¤æã«ã¤ãã¦å¦ç¿ãã¾ãã ãã¼ãªã¨ç´æ°å±éã®ãã極éãã¨ãã¨ããã¼ãªã¨å¤æãå¾ããã¾ãã ãã®ãã¼ãªã¨å¤æã¯ãå¤æã¨éå¤æãå ±ã«ç©åã®å½¢ã«ãªã£ã¦ãããããæå³ã§ã¯åããé£ãã¨æãããã æ¹ãããã®ã§ã¯ãªãã§ããããï¼ ãã®ãããªå ´åã¯ããã¼ãªã¨ç´æ°å±éãããä¸åº¦ãã復ç¿ãããã®æ¥µéãèãã¦ã¿ã¦ä¸ããã ãããã¯ããã®å¾è§£èª¬ããé¢æ£ãã¼ãªã¨å¤æãå ã«å¦ç¿ããã®ããã²ã¨ã¤ã®æ¹æ³ã§ãã ãããã®æ¹ããå¤æã¨éå¤æã®é¢ä¿ãç´æçã«ç解ããããããã§ãã ããã§ã¯ããã¼ãªã¨å¤æã®å¤æã»éå¤æã®é¢ä¿ãå°ãã¾ãããã ã¯ããã«ãè¤ç´ ãã¼ãªã¨ç´æ°å±éã«ã¤ãã¦ç°¡åã«å¾©ç¿ãã¾ãã ãã®è¤ç´ ãã¼ãªã¨ç´æ°å±éã§ã¯ãå¨æ T0 ããã¤é£ç¶ä¿¡å·ã対象ã«ãã¾ãã ãã®è¤ç´ ã¹ãã¯ãã« cn ã¯é¢æ£ã¹ãã¯ãã«ã¨ãªãããã®éé㯠1/T0 ã§
波形ã®ãã¼ã¯å¤ã¨å®å¹å¤ã®æ¯ï¼ãã¼ã¯å¤ï¼å®å¹å¤ï¼ã§å®ç¾©ããã¦ãã¾ããDC ã®æ³¢é«çï¼ã¯ã¬ã¹ããã¡ã¯ã¿ã¼ï¼ã¯âï¼âãæ£å¼¦æ³¢ã®ã¯ã¬ã¹ããã¡ã¯ã¿ã¼ã¯ãâ2 = 1.414 ã¨ãªãã¾ãã ä¾ãã°ããã¼ã¯å¤ãå®å¹å¤ã§ã¯ããã¢ãªã³ã°ã®å¤§ããã«ãã£ã¦æ¯åå¤ãç¸å¯¾çã«å¤åãã¾ããï¼å¤§ããªãã¢ãªã³ã°ã¯æ¯åã®å®å¹å¤ã大ãããç°å¸¸ç¶æ ã®å ´åã®ãã¼ã¯å¤ãããã«å¤§ãããªãã¾ãï¼ãã¯ã¬ã¹ããã¡ã¯ã¿å¤ã¯ãã¼ã¯å¤ã¨å®å¹å¤ã®æ¯ãæ±ãã¦ãããããã¢ãªã³ã°ã®å¤§å°ã«æ¯åå¤ãå·¦å³ããããå·çã®ç°å¸¸åº¦åããããæ£ç¢ºã«å¤æãããã¨ãå¯è½ã¨ãªãã¾ããè¨æ¸¬ãããã¯ã¬ã¹ããã¡ã¯ã¿ã®å¤ã大ããã¨ç°å¸¸åº¦åãã大ããã¨å¤æãã¾ãã ä¿¡å·ã®ãã¯ã¼ãä¸å®ã®å¨æ³¢æ°å¸¯åæ¯ã«åå²ããå帯åæ¯ã®ãã¯ã¼ãå¨æ³¢æ°ã®é¢æ°ã¨ãã¦è¡¨ãããã®ããã¯ã¼ã¹ãã¯ãã«ã¨ããã¾ããåä½ã¯æ¯å¹ ã®ï¼ä¹ï¼V2 rmsï¼ã¨ãªãã¾ãã FFTã¢ãã©ã¤ã¶ã§ã¯ããã¼ãªã¨å¤æã«ãã£ã¦ãæé軸波形ã
Stanford researchers have developed a new technique that allows them to monitor the tiny branches of neurons in a live brain for months at a time. Neuroscientists will now be able to monitor the microscopic changes that occur over the course of progressive brain disease. Stanford University: http://www.stanford.edu/ Stanford News: http://news.stanford.edu/ Stanford University Channel o
Lecture by Professor Andrew Ng for Machine Learning (CS 229) in the Stanford Computer Science department. Professor Ng provides an overview of the course in this introductory meeting. This course provides a broad introduction to machine learning and statistical pattern recognition. Topics include supervised learning, unsupervised learning, learning theory, reinforcement learning and adaptive
以ä¸ã¯ãå¹³æ22å¹´8æ26æ¥ã«çºçãã¾ããçå ä¸ç¶è£ ç½®ã®è½ä¸é¢é£ã® ãã¬ã¹çºè¡¨æãå¤é¨å ¬è¡¨è³æã§ãã å¹³æ23å¹´6æ24æ¥ãçå ä¸ç¶è£ ç½®ã®å¼æãä½æ¥ãå®äºãã¾ããã å¹³æ24å¹´8æ8æ¥
æ¥æ¬åååç 究éçºæ©æ§ã®é«éå¢æ®çããããã ãï¼ç¦äºçæ¦è³å¸ï¼ã§æ¨å¹´ï¼æã«ååç容å¨å ã«çå ä¸ç¶è£ ç½®ãè½ä¸ããæããªããªã£ã¦ããåé¡ã§ã復æ§ä½æ¥ã«ããã£ã¦ããçæç°å¢èª²ã®ç·æ§èª²é·ï¼ï¼ï¼ï¼ãèªæ®ºãã¦ãããã¨ãï¼ï¼æ¥åãã£ãããé¢ä¿è ã«ããã¨ã課é·ã¯ä»æï¼ï¼æ¥ãåå¸å ã®å±±ä¸ã§éºä½ãçºè¦ããããä»æä¸æ¬ã«è¡æ¹ä¸æã«ãªãã家æããç¦äºçè¦æ¦è³ç½²ã«æç´¢é¡ãåºããã¦ããããçæç°å¢èª²ã¯ãçæ交æãªã©ãæ±ãé¨ç½²ãï¼ï¼ï¼ åºå試é¨ã«åããæ¨å¹´å¤ã®çå¿ç¢ºèªè©¦é¨åå¾ãããã©ãã«ãå¤çºãã¦ãããé¢ä¿è ã«ããã¨ãå課ã¯å½ã®ãã¢ãªã³ã°ãªã©ãåããæ©ä¼ãå¤ãæãå¿ããé¨ç½²ã課é·ãåé¨ç½²ã®å¤åãé·ãã£ãã¨ããã
ipycanvasã§å³å½¢ã«å½±ãã¤ããäºãã§ãã¾ããå½±ãã¤ããã«ã¯ã以ä¸ã®å±æ§ã§ãã©ã¡ã¼ã¿ãè¨å®ãã¾ãã shadow_color : å½±ã®è² shadow_offset_x : å½±ã®æ°´å¹³æ¹åãªãã»ãã shadow_offset_y : å½±ã®åç´æ¹åãªãã»ãã shadow_blur = ã¼ããã®å¤§ãã ãµã³ãã«ã³ã¼ã 以ä¸ã®ãµã³ãã«ã³ã¼ãã¯ãåã®å³å½¢ã¨å½±ãæç»ãã¦ãã¾ãã from ipycanvas import Canvas from math import pi canvas = Canvas(width=200, height=100) canvas.shadow_color = '#c0c0c0' canvas.shadow_offset_x = 5 canvas.shadow_offset_y = 5 canvas.shadow_blur = 5 canvas.fill_st
4æ10 æ信表æ ããã¹ãtennisã é·æ¹å½¢ã®ã³ã¼ãã®ä¸å¤®ã«ããããå¼µãããããæãã§ç¸å¯¾ããã©ã±ããã§ãã¼ã«ãæã¡åã£ã¦å¾ç¹ãäºãçæã使ç¨ãã¼ã«ã«ãã£ã¦ç¡¬å¼ã¨è»å¼ã¨ãããã試åã¯ã·ã³ã°ã«ã¹ã»ããã«ã¹ã»æ··åããã«ã¹ã®3種ããããåºçãããããããããããããããããããï½å¤§è¾æ³ããï½ ããã¹ãµã¼ã¯ã«ãtennis circleã 大å¦çã®ãµã¼ã¯ã«æ´»åã¨ãã¦ãæãæã£åãæ©ãå å®ããçæ´»ãéãããã®æ段ã®ä¸ã¤ããããã¹ãµã¼ã¯ã«ã«å ¥ã£ãè ã¯å¤§å¦çæ´»ãå¶ãããã¨ã¾ã§è¨ããã¦ããããå¦å ãããã¯è¿é£ã®å¥³å大çãç¬å ãã極ãã¦æä»çãªéå£ã§ãããã¨ãããããã¹ãµã¼ã¯ã«ã«æå±ããè ã¯æå±ãã¦ããªãè ããã®å«å¦¬ãåæã«éããããããããµã¼ã ããã¯ãã®å½ã®â空æ°âã«æ¦ããæãã ä½äººãã®ç·ã®åã®ããã£ãæ°æéã®ç©èªã§ããã 2011å¹´4æ7æ¥T京大å¦Kå ´ãã£ã³ãã¹ã æ°å ¥çãç¡äºã«å ¥å¦æç¶ããæ¸ã¾
å¥ã«æ°å¹´ã ããã¨ãã訳ã§ããªãã§ããã¯ã¦ãªããã°ã®æ¹ã«ç§»è»¢ãã¾ããï¼ã¤ãã§ã«ãªãã¨ãªãã¢ã«ã¦ã³ãåãä¸æ°. ãã¡ãã®è¨äºã¯ãã®ã¾ã¾æ®ãã¦ããã¾ãï¼ http://mmi.hatenablog.com/ æ®æ®µGUIãä½æããå ´åã¯C++withQtã§ä½æãã¦ã¾ãï¼å®ã®ã¨ããQtã使ãã°ç°¡åã«GUIãä½æã§ãããã§ããï¼ããããQtããã¸ã§ã¯ããä½ãã®ãããã ãªã¼ã¨ããæ ã«Pythonç¨ã®Qtãã¤ã³ãã£ã³ã°ã§ããPyQt5ã使ãã¨ãã£ã¨ãæ軽ã«ã§ããã®ã§ã¯ãªããã¨æã£ã¦è©¦ãã¦ã¿ã¾ããï¼ï¼ã¡ãªã¿ã«ï¼PyQt5ã¯å ¨ç¶ããã¥ã¡ã³ãããªãã§ãï¼ï¼ æåã«ä¸ã¤è¨ã£ã¦ããã¨ï¼Pythonç¨ã®Qtãã¤ã³ãã£ã³ã°ã¯2種é¡ãã£ã¦ï¼1ã¤ãPyQtï¼ããä¸ã¤ãPySideã§ãï¼PySideã®æ¹ã¯Qtéçºå ã®Nokiaããµãã¼ããã¦ã¾ãï¼ä»åPyQtãå©ç¨ããçç±ã¨ããã®ã¯2014/11/12ç¾å¨Qt5ããµãã¼ãã
Python Imaging Library (PIL)ã使ãã¨Pythonã§ç»åå¦çãããããã§ããã¨ããã®ã§ããã使ã£ã¦ãã©ã´ã³æ²ç·ãæãã¦ã¿ã¾ããã ãã¾ãæ¥æ¬èªã®æ å ±ã¯ãªãããã§ãããããã¥ã¡ã³ãã¯è±å¯ã ã¨æãã¾ãã 以ä¸ä»å使ã£ã¦ããé¢æ°ã®ããã Image.new(mode,size,[color]) æå®ãããµã¤ãºã¨ã¢ã¼ãã§ç»åã¤ã¡ã¼ã¸ãä½æããã ä»åã¯300x300ã§8-bit pixels,èæ¯ãç½ã§ç»åãä½æãã¦ããã ImageDraw.Draw(image) ä¸ããããimageããDraw instanceãä½æããã æç»æ示ã¯ãã®ã¤ã³ã¹ã¿ã³ã¹ã«å¯¾ãã¦ãããªãã ImageDraw.line(xy,options) xyã¯[(x,y),(gx,gy)]ã¿ããã«ãã¦ã(x,y)ãã(gx,gy)ã¾ã§ç·ãå¼ãã oprionã¯ä»åã¯fill=0ã¨è²ãé»ã«æå®ãã¦ã
(2009/01/15 æ´æ°) * ã¨ãããããã®çµã¿åãããªããã¾ãè¡ãã¨ããä¾ã§ãã * Windows XPä¸ã§ã®æé ã§ãã * ç°å¢å¤æ°ããããä½æ¥ã¯æ³¨æãã¦è¡ã£ã¦ä¸ããã * æè¿ç§ã¯Ruby-GNOME2ã®æ¹ãæ°ã«å ¥ã£ã¦ãã¾ããããã£ãããã¡ããè¦ã¦ã¿ã¦ä¸ããã Tcl/Tkã®ã¤ã³ã¹ãã¼ã« âActiveStateã®ãµã¤ãããActiveTclããã¦ã³ãã¼ãã ï¼ActiveTclãdownloadã¨ãããã¼ã¯ã¼ããé ¼ãã«ãªã³ã¯ããã©ãã°ãã¦ã³ãã¼ããã¼ã¸ã«è¡ãã¾ããéä¸ã®å人æ å ±ã®å ¥åã¯å¼·å¶ã§ã¯ããã¾ããï¼ âãã¦ã³ãã¼ãããexeãã¡ã¤ã«ãããã«ã¯ãªãã¯ãã¦ActiveTclãã¤ã³ã¹ãã¼ã«ã â»ããã®ãã¼ã¸ã«æ¸ãã¦ããä½æ¥ããã¹ã¦è¡ã£ã¦ãã¹ã¯ãªãããåããªãå ´åãã¤ã³ã¹ãã¼ã«ããTcl/Tkã®ãã¼ã¸ã§ã³ãä¸ãããã¨ã§ãã¾ãè¡ããã¨ãããã¾ããï¼ä¾: 8.5.x.x -> 8
Ruby/GTK2 ããã±ã¼ã¸ GLib2, ATK, GdkPixbuf2, Pango, GTK2, GObjectIntrospection Ruby/GTK3 ããã±ã¼ã¸ GLib2, GIO2, ATK, GdkPixbuf2, Pango, CairoGObject, GObjectIntrospection, GDK3, GTK3 ãã®ä»ã®ããã±ã¼ã¸ RSVG2, Poppler, VTE, VTE3, GtkSourceView2, GtkSourceView3, Clutter, ClutterGTK, WebKitGTK2, WebKit2GTK, GStreamer, ClutterGStreamer å¤ãããã±ã¼ã¸ Ruby/GnomeCanvas2, Ruby/GNOME2 (libgnome), Ruby/Libart2, Ruby/Libglade2, Rub
What RRDtool does RRDtool is the OpenSource industry standard, high performance data logging and graphing system for time series data. RRDtool can be easily integrated in shell scripts, perl, python, ruby, lua or tcl applications. News For the latest news regarding RRDtool, check the Announcements Mailinglist Archive. Or add our Facebook and Google+ pages. Download RRDtool is available for downloa
Chaco 2-Dimensional Plotting Chaco is a Python plotting application toolkit that facilitates writing plotting applications at all levels of complexity, from simple scripts with hard-coded data to large plotting programs with complex data interrelationships and a multitude of interactive tools. While Chaco generates attractive static plots for publication and presentation, it also works well for
Python Programming, news on the Voidspace Python Projects and all things techie. Software Specification My father has a background in engineering. His Phd was a process control system for petrochemical plants, written in Fortran if I remember correctly [1]. He now works with safety consultancy for computer related systems, or something like that, but he retains an interest in software engineering.
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}