Mary Meeker digs up data on how we really use voice control. Hint: Your mom is involved. If thereâs one dominant technological paradigm weâll remember about 2016, itâs voice. From chatbots to Amazon Echo to conversational interfaces, our voicesâand how we use themâare quickly becoming the primary way we interact with computers. Often lacking from this picture, though, is data. Because many tech co
9. ï¼ä¾ï¼DevOpsã®ã¡ããªã¯ã¹ 9 éçºã»CI QA ããã㤠ãªãªã¼ã¹ éç¨ éçºã® ãªã¼ãã»ã¿ã¤ã é稼åæé ãããã¤ã® ãªã¼ãã»ã¿ã¤ã ãªãªã¼ã¹é »åº¦ MTTR æ¬ é¥ã»ãã«ã失æã»ã·ã¹ ãã ãã¦ã³ã« ä¼´ãåä½æ¥ æ¤åºã»è¦éããæ¬ é¥ã® å²åãããã³ æ¬ é¥ã®å½±é¿åº¦åã ãããã¤é »åº¦ã¨ ãããæé ãªãªã¼ã¹æ¯ã® æéã¨ã³ã¹ãã®å²å ã·ã¹ãã ãã¦ã³æã® ã³ã¹ãã¨é »åº¦ã®å²å é稼åæé MTTD (æ¤ç¥ã«ãããæé) ï¼ã·ã¹ãã ï¼å¤æ´ã® æåç ï¼ãªãªã¼ã¹æåã®ï¼ äºæ¸¬å¯è½æ§ å¶æ¥æéå¾ã® ç·æ¥å¼ã³åºãã®é »åº¦ é²è¡ä¸ã®ä½æ¥ã¨ æè¡è² åµ MTTR æ§è½ã¨å©ç¨æéã® å²å ãµã¤ã¯ã«ã»ã¿ã¤ã Wallgren Anders, Measuring DevOps: the Key Metrics that Matter, Agile2016 10. ï¼ä¾ï¼DevOpsã®ã¡ããªã¯ã¹ 10 éçºã»CI
11. ããã©ã«ãã§ç¨æãããããã¥ã¡ã³ã â SSMAgentã¢ãããã¼ã â EC2Configã¢ãããã¼ã â ã³ãã³ãå®è¡(shell/powershell) â Dockerã¢ã¯ã·ã§ã³(èµ·å/åæ¢/ps/ãªã©ãªã©) â ADåå â Windowsã¢ãããã¼ã â msiã®ã¤ã³ã¹ãã¼ã« â çãªã©ãèªåã§å®ç¾©ãã§ãã
This post originally appeared on the DataCamp blog. Big thanks to Karlijn and all the fine folks at DataCamp for letting us share with the Yhat audience! And be sure to check out DataCamp's other cheat sheets, as well. Scikit-Learn library Most of you who are learning data science with Python will have definitely heard already about scikit-learn, the open source Python library that implements a wi
ããã°ã©ãã®çç£æ§ã®å·®ã¯ãåºæ¥ã人ã¨åºæ¥ãªã人ã§10åã¨ã100åã¨ãè¨ãããããããªé¦¬é¹¿ãªãã¨æããããããããªãããäºå®ã ã ããããä¸ç·ã«åãããã¨ãåºæ¥ãããã°ã©ãããä¸æã«ä½ãããããã°ã©ã ã®ä¿®æ£ãããªããã°ãããªãã¦ãå ¨ä½ã®çç£æ§ãè½ã¨ããã¨ã«ãªãã ã¤ã¾ããåºæ¥ãªãããã°ã©ãã¯ãã¼ã ã§åãã¨ãçç£æ§ããã¤ãã¹ã«ããã®ã ãå³ãããã¨ãè¨ãã°ãããªãæ¹ããã·ãªã®ã§ããã ã½ããã¦ã§ã¢éçºã«ç«ã®æã¯ãããªãã®ã ã ã§ã¯ãåºæ¥ãªãããã°ã©ãã¨ã¯ã©ããªäººãã¡ãã ã³ããã§æ¸ãããã°ã©ãã ãä»ã§åãã¦ããããã°ã©ã ãã³ãããã¦ããªãã¨ãªãç´ãã¦æ¸ãã¦ããããã°ã©ãã ã ãªãããã°ã©ã ãåãã®ããã©ãæ¸ãã°åãã®ããããã£ã¦ããªãã ãã 沢山ã®ããã°ã©ã ãæ¸ãã ãã®éç£åããã°ã©ãã ããããã人ã®ããã°ã©ãã³ã°ã¯ããããã°ããã¦ã¿ã¦ã横ã§è¦ã¦ãã¨ããã«ãããã ã¾ããã¨ã©ã¼ã¡ãã»ã¼ã¸ãè¦ãª
ããããªãã®ä¼è©± ãããã®ä¼è©± å®ä¾ ãããã®ä¼è©±ãã§ãã人 ãããã®ä¼è©±ã®é å 親ããã®ç¢ºèª éã³å¿ è¨å¤ã®æå³ ããªãããã¦ã¿ã¾ãããï¼ ããã«ã¡ã¯ãRenaã§ãã 大éªã®æ¹ã¯ããããªãã ãã§ä¼è©±ãæãç«ã¤ã¨è³ã«ãã¾ããã ããããªãã®ä¼è©± Aãããããï¼ã Bããããã Aããããªã Bãããããã ã¨ãã£ãå ·åã§ãã ããã¯å¤§éªäººå士ã ããåºæ¥ãä¼è©±ã¨è¨ããã§ãããã 仲éå ã ãã§éãåãä¼è©±â¦ç´ æµã§ããï¼ ãããã®ä¼è©± ç§ã¯å¤§éªåºèº«ã§ã¯ããã¾ããã®ã§ä¸ã®ä¼è©±ã¯ã§ãã¾ããã ããã代ããã«ãããã®ä¼è©±ãã§ãã¾ãã ãããªå ·åã§ãã å®ä¾ ãã¼ï¼ ï¼ç²ããã¼ï¼ï¼ ãï¼ ï¼ã©ããï¼ï¼ ãã¼ã ï¼ãªãã§ããªããï¼ ãã¼ ï¼ãã£ãï¼ ãï¼ ï¼ããããï¼ï¼ ãããã®ä¼è©±ãã§ãã人 ãã®ä¼è©±ãã§ããã®ã¯ç§ã®èº«ã®åãã§ãããããéããã人ã ãã§ãã 家æã¨ããå人ãæ°å¿ç¥ãã人ã ãã ç§ã®æ§æ ¼ã
ãã®ãã¼ã¸ã«ã¤ã㦠ãã®è¨äºã¯ã以åæ¸ããã社å Wikiã«æ å ±ãæ¸ãã¨ãã«å®ã£ã¦ã»ããããã£ãã²ã¨ã¤ã®ã«ã¼ã«ãã®ç¶ç·¨ã§ããååã¯ãåã ã®ãã¼ã¸ãã©ãæ¸ãã¹ããã¨ãã話ããã¾ããããä»åã¯ç¤¾å Wiki å ¨ä½ãä¿¡ç¨ã§ãããã®ã«ããæ¹æ³ã«ã¤ãã¦èãã¾ãã muziyoshiz.hatenablog.com æ³å®ããç°å¢ ãã®è¨äºã¯ãã½ããã¦ã§ã¢éçºããã¸ã§ã¯ãã«é¢ãã Wiki ã社å ã«ãã£ã¦ãããã«å人ãããã¥ã¡ã³ãï¼ä»æ§æ¸ãæé æ¸ãªã©ï¼ãæ¸ããããã«ãªã£ã¦ããç°å¢ãæ³å®ãã¦ãã¾ãã ç§èªèº«ãã½ããã¦ã§ã¢éçºã®ã¨ããã Wiki ã使ããªãã®ã§ãå ·ä½ä¾ããã®ãããªç°å¢ã«å¯ã£ã¦ãã¾ãããã ãããç¨åº¦ã¯ç¤¾å Wiki å ¨è¬ã«éãã話ãã¨æãã¾ãã ã«ã¼ã«ï¼ãæ´æ°ããç¶ããããã¼ã¸ã¨ãæ´æ°ãããªãããã¼ã¸ãã¯ã£ããåãã ãã1å¹´ã»ã©ç¤¾å ããã¸ã§ã¯ããããã¤ã渡ãæ©ãã¦ããã®ã§ãããå人çã«ã¯ãã
by Ian McKay The Netflix TV interface is constantly evolving as we strive to figure out the best experience for our members. For example, after A/B testing, eye-tracking research, and customer feedback we recently rolled out video previews to help members make better decisions about what to watch. Weâve written before about how our TV application consists of an SDK installed natively on the device
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}